Պարզ Թիվ

Պարզ թիվ, մեկից մեծ բնական թիվ, որը երկու ավելի փոքր բնական թվերի արտադրյալ չէ։ Մեկից մեծ բնական թիվը, որը պարզ չէ կոչվում է բաղադրյալ թիվ։ Օրինակ, 5֊ը պարզ է, քանի որ այն միայն կարելի է ներկայացնել 1 × 5 և 5 × 1 արտադրյալների տեսքով։ Սակայն, 4֊ը բաղադրյալ է, քանի որ այն կարելի է ներկայացնել 2 × 2 տեսքով։ Թվաբանության հիմնական թեորեմի պատճառով պարզ թվերը հիմնարար դեր ունեն թվերի տեսությունում։ Ըստ թեորեմի՝ մեկից մեծ յուրաքանչյուր a բնական թիվ կամ պարզ է, կամ այն վերլուծվում է պարզ թվերի արտադրյալի, այն էլ միակ ձևով, այսինքն, եթե a = p 1 p 2 .

Groups of two to twelve dots, showing that the composite numbers of dots (4, 6, 8, 9, 10, and 12) can be arranged into rectangles but prime numbers cannot
Բաղադռյալ թվերը հնարավոր է դասավորել ուղղանկյան տեսքով, բայց պարզ թվերը թվերը հնարավոր չէ։

Տրված թվի պարզությունը ստուգելու համար կարելի հերթով փորձել ու տեսենել արդյոք ֊ը բաժանվում է 2֊ի և միջև ընկած որևէ ամբողջ թվի։ Այս ալգորիթմը պարզ է, բայց դանդաղ։ Ավելի արագ ալգորիթմներից են՝ Միլեր֊Ռաբինի պարզության թեստը, որը արագ է, բայց ունի սխալվելու փոքր շանս, և AKS պարզության թեստը, որը միշտ բազմանդամային արագությամբ գտնում է ճիշտ պատասխանը, բայց ճափազանց դանդաղ է գործնականում օգտագործվելու համար։ Հատուկ տեսքի թվերի համար, ինչպես օրինակ Մերսենի թվերը, գոյություն ունեն ավելի արագ մեթոդներ։ 2018 թվականի դեկտեմբերի դրությամբ մեծագույն հայտնի պարզ թիվը Մերսենի թիվ է, որն ունի 24,862,048 թվանշան։

Պարզ թվերն անվերջ են։ Վերջինիս ճշմարտացիության առաջին ապացույցին հանդիպում ենք Էվկլիդեսի մոտ։ Նրա ապացույցը կարճ կարելի է ձևակերպել այսպես

        Պատկերացնենք, որ պարզ թվերի քանակությունը վերջավոր է։ Բոլոր պարզ թվերը բազմապատկենք իրարով ու ստացվածին գումարենք մեկ։ Ստացված թիվը չի բաժանվում մեր ունեցած և ոչ մի պարզ թվի վրա, որովհետև բաժանումից ստացված մնացորդը միշտ մեկ է լինում։ Ստացվում է, որ այդ թիվը պետք է բաժանվի մի պարզ թվի վրա, որը մենք չենք ընդգրկել մեր պարզ թվերի բազմության մեջ։ Ստացանք հակասություն։

Պարզ թվերը բաղադրյալ թվերից բաժանող հայնտի բանաձև չկա։ Սակայն, բնական թվերի մեջ պարզ թվերի բաշխումը կարելի է վիճակագրորեն մոդելավորել։ Այս ուղղությամբ առաջին արդյունքը Պարզ թվերի թեորեմն էր, որն ապացուցվել է 19֊րդ դարի վերջին։ Ըստ այս թեորեմի՝ հավանականությունը, որ պատահականորեն ընտրված մեծ թիվը պարզ կլինի հակադարձ համեմատական է իր թվանշանների քանակին, այսինքն՝ իր լոգարիթմին։

Պարզ թվերի հետ կապված որոշ խնդիրներ դեռ չլուծված են։ Այս խնդիրներից են՝ Գոլդբախի խնդիրը (երկուսից մեծ յուրքանչյուր ամբողջ թիվ կարելի է ներկայացնել երկու պարզ թվերի գումարի տեսքով) և երկվորյակների ենթադրությունը (գոյություն ունե անթիվ բազմությամբ պարզ թվերի զույգեր, որոնք իրարից երկուսով են տարբերվում)։ Նման հարցերը խթանել են թվերի տեսության տարբեր բնագավառների զարգացմանը, ինչպես օրինակ անալիտիկ կամ հանրահաշվական թվերի տեսությունը։ Պարզ թվերը նաև լայն կիրառություն ունեն տեղեկատվական տեխնոլոգիաներ, մասնավորապես՝ հանրային բանալիների գաղտնագրության մեջ։ Աբստրակտ հանրահաշվում պարզ տարրերը և պարզ իդեալները պարզ թվերի ընդհանրացված օբյեկտներ են։

Սահմանում և օրինակներ

Բնական թիվը (1, 2, 3, 4, 5, 6 և այլն) կոչվում է պարզ թիվ, եթե այն մեծ է 1֊ից և հնարավոր չէ ներկայացնել իրենից փոքր երկու բնական թվերի արտադրյալ տեսքով։ Այն թվերը, որոնք մեծ են 1֊ից և պարզ չեն կոչվում են բաղադրյալ թվեր։ Այլ կերպ ասած, Պարզ Թիվ ֊ը պարզ է, եթե Պարզ Թիվ  տարրերը հնարավոր չէ բաժանել մեկից մեծ տարր պարունակող ավելի փոքր հավասարաչափ խմբերի, կամ հնարավոր չէ Պարզ Թիվ  կետերը դասավորել ուղղանկյան տեսքով այնպես, որ ուղղանկյան բարձրությունն ու լայնությունը ունի մեկից շատ քանակությամբ կետեր։ Օրինակ, 1֊6 միջակայքում 2, 3 և 5 թվերը պարզ են, քանի որ ոչ մի թվի առանց մնացորդի չեն բաժանվում (մեկից ու իրենցից բացի)։ 1֊ը պարզ չէ ըստ սահմանման։ 4 = 2 × 2 և 6 = 2 × 3 թվերը բաղադրյալ են։

Պարզ Թիվ 
7֊ը պարզ է, քանի որ առանց մնացորդի չի բաժանվում 2, 3, 4, 5 կամ 6 թվերից ոչ մեկին։

Բնական Պարզ Թիվ  թվի բաժանարարները այն բնական թվերն են, որոնց Պարզ Թիվ ֊ը բաժանվում է առանց մնացորդի։ Յուրաքանչյուր Պարզ Թիվ  բնական թվի համար 1֊ը և Պարզ Թիվ ֊ը բաժանարարներ են։ Եթե թիվն ունի այլ բաժանարարներ, ապա այն պարզ չէ։ Հետևաբար, պարզ թվերի համարժեք սահմանում է հետևյալ․ ճիշտ երկու բաժանարար ունեցող թվերն են։ Քանի որ 1֊ը ունի միայն մեկ բաժանարար, այն պարզ չէ այս սահամանմամբ նույնպես։ Մեկ այլ համարժեք սահմանում է՝ Պարզ Թիվ ֊ը պարզ է, եթե այն մեծ է մեկից և առանց մնացորդի չի բաժանվում Պարզ Թիվ  թվերից ոչ մեկին։

Առաջին 25 պարզ թվերն են (100 փոքր բոլոր պարզ թվերը)`

Միակ զույգ պարզ թիվը երկուսն է, քանի որ երկուսից մեծ կամայական զույգ թիվ բաժանվում է երկուսի։ Հետևաբար, 2֊ից բացի բոլոր պարզ թվերը կենտ են։ Տասնորդական հաշվման համակարգում 5֊ից մեծ բոլոր պարզ թվերը ավարտվում են 1, 3, 7 կամ 9 թվանշաններով։ Մնացած բոլոր թվանշաններով ավատրվող թվերը բաղադրյալ են, քանի որ 0, 2, 4, 6 և 8 թվանշաններով ավատրվող թվերը զույգ են, իսկ 0 կամ 5 թվանշաններով ավարտվող թվերը բաժանվում են 5֊ի։

Պարզ թվերի բազմությունը հաճախ նշանակվում է Պարզ Թիվ ֊ով կամ Պարզ Թիվ ֊ով։

Պատմություն

Պարզ Թիվ 
Մաթեմատիկական պապիրուսներ

Մոտ մ․թ․ա 1550 թվակաների Մաթեմատիկական պապիրուսներում կան պարզ և բաղադրյալ թվերի տարբեր ձևերի Եգիպտական կոտորակի ընդարձակումներ։ Սակայն, պարզ թվերի հայտնի ամենավաղ ուսումնասիրությունները պատկանում են հին հույն մաթեմատիկոսներին, որոնք պարզ թվերը կոչում էին prōtos arithmòs (πρῶτος ἀριθμὸςԷվկլիդեսը իր «Սկզբունքներ» (մոտ մ․թ․ա 300) աշխատությունում ապացուցել է, որ գոյություն ունեն անթիվ բազմությամբ պարզ թվեր, ինչպես նաև թվաբանության հիմնական թեորեմը և նկարագրել է Մերսենի թվից կատարյալ թիվ ստանալու եղանակ։ Մեկ այլ հունական հայտնագործություն է Էրատոսթենեսի մաղը, որը մինչև այժմ կիրառվում է պարզ թվերի ցանկեր կառուցելու համար։

Մոտ 1000 թվականին իսլամական մաթեմատիկոս Իբն ալ-Հայթամը հայտնաբերել է Ուիլսոնի թեորեմը, որը Պարզ Թիվ  պարզ թիվը բնութագրում է որպես Պարզ Թիվ ֊ին առանց մնացորդի բաժանվող թիվ։ Նա նաև ենթադրել է, որ բոլոր զույգ կատարյալ թվերը Էվկլիդեսի՝ Մերսենի թվերի կառուցուցմից են, սակայն չի կարողացել ապացուցել այս ենթադրությունը։ Մեկ այլ իսլամական մաթեմատիկոս՝ Իբն ալ Բաննա ալ Մարակուշին, նկատել է, որ Էրատոսթենեսի մաղը կարելի է արագացնել՝ միայն մինչև վերին սահմանի քառկուսի արմատ ընկած բաժանարաները դիտարկելու միջոցով։ Ֆիբոնաչին իսլամական մաթեմատիկոսների հայտնագործությունները ներմուծել է Եվրոպա։ Իր «Liber Abaci» (1202) գիրքն առաջինն է, որտեղ նկարագտվել է պազության ստուգման պարզ ալգորիթմը, որտեղի ստուգվում է թե արդյոք թիվը առանց մնացորդի բաժանվում է մինչև իր քառակուսի արամտը ընկած թվերից որևէ մեկին։

1640 թվականին Պիեռ դը Ֆերմաը առանց ապացույցի նկարագրել է Ֆերմայի փոքր թեորեմը, որը հետագայում ապացուցել են Գոթֆրիդ Լայբնիցը և Լեոնարդ Էյլերը։ Ֆերման նաև ուսումնասիրել է Ֆերմայի թվերի (Պարզ Թիվ  տեսքի թվեր) պազրությունը, իսկ Մարին Մերսենը ուսումնասիրել է Մերսենի թվերը, որոնք Պարզ Թիվ  տեսքի պարզ թվեր են, որտեղ Պարզ Թիվ ֊ն պարզ է։ Քրիստիան Գոլդբախը 1742 թվականին Էյլերին ուղղված նամակում ձևակերպել է Գոլդբախի խնդիրը, ըստ որի՝ յուրաքանչյուր զույգ թիվ հավասար է երկու պարզ թվերի գումարի։ Էյլերը ապացուցել է Իբն ալ-Հայթամ ենթադրությունը (այժմ հայտնի է որպես Էվկլիդես֊Էյլերի թեորեմ), թե յուրաքանչյուր զույգ կատարյալ թիվ կարելի է կառուցել Մերսենի թվերից։ Էյլերը պարզ թվերի անվերջության և Պարզ Թիվ  գումարի տարամիտությունը ապացուցելու համար կիրառել է տարբեր մեթոդներ մաթեմատիկական անալիզից։ 19֊րդ դարի սկզբին Ադրիեն-Մարի Լեժանդրը և Կառլ Գաուսը ենթադրել են, որ երբ Պարզ Թիվ ֊ը ձգտում է անվերջության, մինչև Պարզ Թիվ  ընկած պարզ թվերի քանակը ասիմպտոտիկ է Պարզ Թիվ ֊ին, որտեղ Պարզ Թիվ ֊ը Պարզ Թիվ ֊ի բնական լոգարիթմն է։ Պարզ թվերի այս մեծ խտության հետևանք է Բերտրանի պոստուլատը, ըստ որի՝ կամայական Պարզ Թիվ  թվի համար Պարզ Թիվ  և Պարզ Թիվ  միջակայքում գոյություն ունի պարզ թիվ (Պաֆնուտի Չեբիշևը ապացուցել է սա 1852 թվականին)։ Բեռնարդ Ռիմանը զետա ֆունկցիայի վերաբերյալ իր 1859 թվականի հոդվածում (անգլ.՝ On the Number of Primes Less Than a Given Magnitude) ուրվագծել է Լեժանդրի և Գաուսի ենթադրության ապացույցը։ Չնայած, սերտորեն կապված Ռիմանի հիպոթեզը մինչև այժմ ապացուցված չէ, Ռիմանի ուրվագիծը 1896 թվականին ամբողջացրել են Ժակ Ադամարը և Շառլ Ժան դը լա Վալե Պուսենը, ինչն այժմ հայտնի է որպես Պարզ թվերի թեորեմ։ 19-րդ դարի մեկ այլ կարևոր հայտնագործություն էր թվաբանական պրոգրեսիաների մասին Դիրիխլեի թեորեմը, ըստ որի՝ որոշակի թվաբանական պրոգրեսիաներ պարունակում են անթիվ բազմությամբ պարզ թվեր։

Շատ մաթեմատիկոսներ փորձել են մշակել պարզության ստուգման մեթոդներ այն դեպքերի համար, երբ բոլոր հնարավոր բաժանարարների ստուգումը գործնականում կիրառելի չէ։ Հատուկ տեսքի թվերի պարզությունն ստուգող մեթոդներից են՝ Պեպինի թեստը Ֆրամայի թվերի համար (1877), Պրոտի թեորեմը (մոտ 1878 թվական), Լուկաս֊Լեմարի թեստը (1856) և ընհանրացված Լուկասի պարզության թեստը։

1951 թվականից սկսած բոլոր մեծագույն հայտնի պարզ թվերը հայտնաբերվել են համակարգչային թեստերի միջոցով։ Ավելի մեծ պարզ թվերի որոնումը հետաքրքրություն է առաջացրել մաթեմատիկայից դուրս այլ բնագավառներում նույնպես՝ GIMPS֊ի և բաշխված հաշվարկման միջոցով։ Այն միտքը, թե պարզ թվերը մաքուր մաթեմատիկայից դուրս կիրառություն չունեն փշրվել է 1970֊ականներին, երբ ստեղծվեցին հանրային բանալիների գաղտնագրությունը և RSA֊ը՝ օգտվելով պարզ թվերից։

Պարզության ստուգման աճող գործնական կարևորությունը հանգեցրել է բարելավված մեթոդների ստեղծման, որոնք կարող են ստուգել կամայական տեսքի ավելի մեծ թվեր։ Պարզ թվերի մաթեմատիկական տեսության վերջին կարևոր արդյունքներից են Գրին֊Տաո թեորեմը (2004), ըստ որի՝ գոյություն ունեն կամայական երկարությամբ պարզ թվերի թվաբանական պրոգրեսիաներ և Յիտանգ Ժանգի 2013 ապացույցը, որ սահմանափակ հեռավորությամբ պարզ թվերի քանակն անվերջ է։

Մեկի պարզություն

Հին հույս մաթեմատիկոսներից շատերը մեկը թիվ չէին համարում, հետևաբար՝ չէին դիտարկում դրա պարզության հարցը։ Հույն և հետագայում հռոմեացի գիտնականներից որոշները, որոնց թվում էին Նիկոմաքոսը, Յամբլիքոսը, Բոետիոսը և Կասիոդորուսը, պարզ թվերը համարում էին կենտ թվերի ենթաբազմություն և նրանք երկուսը նույնպես պարզ չէին համարում։ Սակայն, Էվկլիդեսն ու հույն մաթեմատիկոսների մեծ մասը երկուսը պարզ էին համարում։ Միջնադարի իսլամական մաթեմատիկոսները հիմնականում հետևում էին հույներին և մեկը թիվ չէին համարում։ Միջնադարում և վերանծննդի դարաշրջանում մաթեմատիկոսները սկսեցին մեկը թիվ համարել, և նրանցից որոշներն այն ներառում էին պարզ թվերի մեջ։ 18֊րդ դարի կեսին Քրիստիան Գոլդբախը Լեոնարդ Էյլերի հետ նամակագրությունում մեկը համարել է պարզ թիվ, սակայն, Էյլերը մեկը պարզ թիվ չէր համարում։ 19֊րդ դարում շատ մաթեմատիկոսներ դեռ մեկը համարում էին պարզ, իսկ մեկը ներառող պարզ թվերի ցանկեր հրատարակվել են մինչև 1956 թվական։

Եթե պարզ թվերը վերասահմանվեն այնպես, որ ներառեն մեկը, պարզ թվերի վերաբերյալ շատ պնդումներ ավելի անհարմար տեսք կստանան։ Օրինակ, թվաբանության հիմնական թեորեմը պետք է վերաձևակերպվի պարզ բաժանարարներից մեկը առանձնացնելու համար, քանի որ մեկը ներառելու դեպքում վերլուծումը միակը չի լինի։ Նմանապես, Էրատոսթենեսի մաղը ճիշտ չի աշխատի, եթե այն մեկը դիտարկի որպես պարզ թիվ, քանի որ այն կհեռացնի մեկի բոլոր արտադրյալները, այսինքն՝ բոլոր թվերը։ Պարզ թվերի այլ՝ ավելի տեխնիական հատկություններ նույնպես ճիշտ չեն լինի․ օրինակ, Էյլերի Պարզ Թիվ  ֆունկցիան կամ բաժանարարների գումարի ֆունկցիան։ 20֊րդ դարի սկզբին մաթեմատիկոսները սկսեցին համաձայնվել, որ մեկը չպետք է ներառվի պարզ թվերի մեջ։

Տարրական հատկություններ

Եզակի վերլուծում

Թիվը պարզ թվերի արտադրյալ տեսքով գրելը կոչվում է թվի վերլուծում պարզ պարտադրիչների։ Օրինակ,

    Պարզ Թիվ 

Արտադրյալ անդամները կոչվում են պարզ արտադրիչներ։ Նույն պարզ արտադրիչը կարող է հանդիպել մեկի ավելի անգամ․ վերևի օրինակում երեքը հանդիպում է երկու անգամ։ Երբ պարզ թիվը հանդիպում է մի քանի անգամ, աստիճանի օգնությամբ կարելի է դրանք հավաքել և ավելի սեղմ գրել․ օրինակ, վերևում Պարզ Թիվ ֊ի փոխարեն գրվել է Պարզ Թիվ ՝ երեքի քառակուսին նշելու համար։

Մաթեմատիկայում և թվերի տեսությունում պարզ թվերի կարևորությունը պայմանավորված է թվաբանության հիմնարար թեորեմով։ Ըստ այս թեորեմի, մեկի մեծ յուրաքանչյուր ամբողջ թիվ կարելի է ներկայացնել մեկ կամ ավելի պարզ թվերի արտադրյալի տեսքով։ Ընդ որում, այս ներկայացումը եզակի է, այսինքն՝ երկու կամայական վերլուծում կունեն նույն պարզ թվերը նույն քանակով, չնայած նրանց հերաթականությունը կարող է տարբեր լինել։ Այսպիսով, պարզ թվերը կարելի է համարել բնական թվերի «հիմնական շինանյութ»։

Պարզ արտադրիչների վերլուծման եզակիության ապացույցներից որոշները օգտագործում են Էվկլիդեսի լեմման, ըստ որի՝ եթե Պարզ Թիվ ֊ն պարզ թիվ է և Պարզ Թիվ  ու Պարզ Թիվ  ամբողջ թվերի Պարզ Թիվ  արտադրյալը բաժանվում է Պարզ Թիվ ֊ի, ապա Պարզ Թիվ ֊ն կամ Պարզ Թիվ ֊ն (կամ երկուսն էլ) բաժանվում են Պարզ Թիվ ֊ի։ Եթե թիվը բաժանվում է Պարզ Թիվ ֊ի և թվի բաժանարարներից գոնե մեկը նույնպես բաժանվում է Պարզ Թիվ ֊ի, ապա Պարզ Թիվ ֊ն պարզ է։

Անսահմանություն

Գոյություն ունեն անթիվ բազմությամբ պարզ թվեր։ Այլ կերպ ասած

    2, 3, 5, 7, 11, 13, ...

հաջորդականությունը վերջ չունի։ Այս պնդումը կոչվում է Էվկլիդեսի թեորեմ՝ ի պատիվ հին հույն մաթեմատիկոս Էվկլիդեսի, քանի որ պնդման հայտնի ամենահին ապացույցը պատկանոմ է նրան։ Գոյություն ունեն այս պնդման շատ այլ ապացույցներ, այդ ավում՝ անալիտիկ ապացույց Լեոնարդ Էյլերի կողմից, Գոլդբախի ապացույց հիմված Ֆերմայի թվերի վրա, ընդհանուր տոպոլոգիայի միջոցով Հիլել Ֆուրստենբերգի ապացույցը և Էռնստ Էդուարդ Կումմերի էլեգանտ ապացույցը։

Էվկլիդեսի ապացույցը ցույց է տալիս, որ պարզ թվերի կամայական վերջավոր ցանկ թերի է։ Սա ցույց տալու համար պետք է ցանկի բոլոր թվերը բազմապատկել և արդյունքին գումարել մեկ։ Եթե տրված ցանկը պարունակում է Պարզ Թիվ  պարզ թվերը, ապա ստացված թիվը հավասար է՝

    Պարզ Թիվ 

Ըստ թվաբանության հիմնական թեորեմի Պարզ Թիվ ֊ը հնարավոր է վերլուծել պարզ արտադրիչների՝

    Պարզ Թիվ ։

Պարզ Թիվ ֊ը առանց մնացորդի բաժանվում է այս արտադրիչներից յուրաքանչյուրին, բայց եթե Պարզ Թիվ ֊ը բաժանենք տրված ցանկի պարզ թվերից յուրաքանչյուրին, մեկ մնացորդ կմնա, հետևաբար՝ Պարզ Թիվ ֊ի պարզ արտադրիչներից ոչ մեկը տրված ցանկում չկա։ Քանի որ բոլոր պարզ թվերի պարունակող վերջավոր ցանկ գոյություն չունի, ուրեմն գոյություն ունեն անթիվ բազմությամբ պարզ թվեր։

Ամենափոքր պարզ թվերի արտադրյալին մեկ գումարելով ստացված թվերը կոչվում են Էդկլիդեսի թվեր։ Այս թվերից առաջին հինգը պարզ են, բայց վեցերորդը՝

    Պարզ Թիվ 

բաղադրյալ է։

Պարզ թվերի բանաձև

Պարզ թվերի էֆեկտիվ բանաձև գոյություն չունի։ Օրինակ, գոյություն չունի ոչ հաստատուն բազմանդամ, որի բոլոր արժեքները պարզ թվեր են։ Սակայն, գոյություն ունեն բազմաթիվ արտահայտություններ, որոնք պարունակում են բոլոր պարզ թվեր կամ պարունակում են միայն պարզ թվեր։ Այս արտահայտություններից մեկը հիմնված է Ուիլսոնի թեորեմի վրա և գեներացնում է երկու թիվ բազմաթիվ անգամ, բայց մնացած բոլոր պարզ թվերը ճիշտ մեկ անգամ։ Գոյություն ունի ինը փոփախականով և մեկ պարամետրով Դիոֆանտյան հավասարում հետևյալ հատկությամբ՝ պարամետրը պարզ է այն և միայն այն դեպքում, երբ արդյունքում ստացված հավասարումների համակարգի ունի բնական թվերով լուծում։ Սրա միջոցով հնարավոր է ստանալ բանաձև, որի բոլոր դրական արժեքները պարզ կլինեն։

Պարզ թվեր գեներացնող այլ բանաձևեր կարելի է ստանալ Միլսի կամ Ռայթ թեորեմներից։ Ըստ սրա, գոյություն ունեն իրական Պարզ Թիվ  և Պարզ Թիվ  թվեր, այնպես որ

    Պարզ Թիվ 

պարզ թվեր են կամայական բնական Պարզ Թիվ ֊ի համար (առաջին բանաձև) և կամայական թվով ցուցիչների համար (երկրորդ բանաձև)։ Այստեղ Պարզ Թիվ ֊ով նշանակված է ամբողջ մասը։ Սակայն, սրանք նոր պարզ թվեր գեներացնելու համար օգտակար չեն, քանի որ Պարզ Թիվ  կամ Պարզ Թիվ  թվերը գտնելու համար նախ և առաջ պետք է ունենալ պարզ թվերի ցանկ։

Բաց խնդիրներ

Պարզ թվերի վերաբերյալ բազմաթիվ ենթադրություններ կան։ Այս ենթադրություններ հաճախ ունեն պարզ ձևակերպում, բայց չեն ապացուցվել տասնամյակներ շարունակ․ օրինակ՝ 1912 թվականից առաջարկված Լանդաուի չորս խնդիրները դեռ չեն լուծվել։ Նրանցից մեկը Գոլդբախի խնդիրն է, ըստ որի երկուսից մեծ կամայական Պարզ Թիվ  զույգ թիվ կարելի է գրելու երկու պարզ թվերի գումարի տեսքով։ 2014 թվականի դրությամբ այս պնդումը ստուգվել և հաստատվել է մինչև Պարզ Թիվ  թվերի համար։ Սակայն, առնչվող Վինոգրադովի թեորեմը ապացուցվել է, ըստ որի՝ բավարար մեծ յուրաքանչյուր կենտ թիվ կարելի ներկայացնել երեք պարզ թվերի գումարի տեսքով։ Ըստ Չենի թերոեմը, որը նույնպես ապացուցվել է, բավարար մեծ յուրաքանչյուր զույգ թիվ կարելի է ներկայացնել պարզ և կիսապարզ թվի (կիսապարզ են կոչվում երկու պարզ թվերի արտադրյալները) գումարի տեսքով։ Նաև հայտնի է, որ 10֊ից մեծ կամայական զույգ թիվ կարելի է ներկայացնել վեց պարզ թվերի գումարի տեսքով։ Նման հարցերով զբաղվող մաթեմատիկայի ճյուղը կոչվում է թվերի ադիտիվ տեսության։

Մի շարք բաց խնդիրներ կապված են պարզ թվերի հեռավորության՝ երկու հաջորդական պարզ թվերի տարբերության հետ։ Պարզ Թիվ  հաջորդականությունից ակնհայտ է, որ գայություն ունեն կամայական հեռավորությամբ հաջորդական պարզ թվեր, քանի որ կամայական Պարզ Թիվ  բնական թվի համար այն պարունակում է Պարզ Թիվ  բաղադրյալ թիվ (Պարզ Թիվ -ը բաժանվում է Պարզ Թիվ , քանի որ և՛ Պարզ Թիվ ֊ը, և՛ Պարզ Թիվ ֊ը բաժանվում են Պարզ Թիվ ֊ի, Պարզ Թիվ -ը բաժանվում է Պարզ Թիվ , քանի որ և՛ Պարզ Թիվ ֊ը, և՛ Պարզ Թիվ ֊ը բաժանվում են Պարզ Թիվ ֊ի, և այլն)։ Սակայն, մեծ հեռավերությամբ պարզ թվեր կարող են հանդիպել շատ ավելի վաղ։ Օրինակ, 8 հեռավերությամբ առաջին հաջորդական պարզ թվերը 89֊ն ու 97֊ն են, ինչը Պարզ Թիվ ֊ից շատ ավելի փոքր է։ Ենթադրվում է, որ գոյություն ունեն անթիվ հազմությամբ երկվորյակ պարզ թվեր։ Պոլինյակի ենթադրության համաձայն կամայական դրական Պարզ Թիվ  ամբողջ թվի համար գոյություն ունեն անթիվ բազմությամբ Պարզ Թիվ  հեռավորությամբ հաջորդական պարզ թվեր։ Անդրիցայի ենթադրությունը, Բրոկարի ենթադրությունը, Լեժանդրի ենթադրությունը և Օփերմանի ենթադրությունը պնդում են, որ Պարզ Թիվ  և Պարզ Թիվ  թվերի միջև ընկած հաջորդական պարզ թվերի ամենամեծ հեռավորությունը չպետք է գերազանցի մոտավորապես Պարզ Թիվ ֊ը։ Այս պնդումը հետևում է Ռիմանի հիպոթեզից։ Իսկ ըստ Կրամերի ենթադրության՝ այդ վերին սահմանը հավասար է Պարզ Թիվ ֊ի։

Անալիտիկ հատկություններ

Թվերի անալիտիկ տեսությունը թվերի տեսության բաժին է, որը մաթեմատիկական անալիզի մեթոդների միջոցով, ինչպես օրինակ անընդհատ ֆունկցիաներ, սահմաններ և անվերջ շարքեր, փորձում է լուծել ամբողջ թվերի վերաբերյալ խնդիրներ։ Այս բանագավառի առաջին արդյունքներից էր Բազելի խնդրի լուծումը Լեոնարդ Էյլերի կողմից։ Խնդիրը պահանջում է գտնել Պարզ Թիվ  անվերջ գումարի արժեքը, որն այժմ հայտնի է Ռիմանի զետա ֆունկցիայի Պարզ Թիվ  արժեք։ Այս ֆունկցիան սերտորեն կապված է պարզ թվերի և մաթեմատիկայի ամենակարևոր չլուծված խնդիրներից մեկը՝ Ռիմանի հիպոթեզի հետ։ Էյլերը ցույց է տվել, որ Պարզ Թիվ ։ Այս թվի հակադարձը՝ Պարզ Թիվ -ը, հավասար է սահմանային հավանականությանը, որ մեծ միջակայքից հավասարաչափ բաշխմամաբ ընտրված պատահական երկու թվերը փոխադարձ պարզ կլինեն (չունենան ընդհանուր բաժանարարներ)։

Պարզ թվերի թեորեմը նկարագրում է պարզ թվերի ասիմպտոտ բաշխումը դրական ամբողջ թվերի մեջ, սակայն Պարզ Թիվ -րդ պարզ թվի համար էֆեկտիվ բանաձև հայտնի չէ։ Ըստ թվաբանական պրոգրեսիաների մասին Դիրիխլեի թեորեմի՝ եթե Պարզ Թիվ -ն և Պարզ Թիվ -ն փոխադարձ պարզ թվեր են, ապա

    Պարզ Թիվ 

գծային բազմանդամները ընդունում անթիվ բազմությամբ պարզ արժեքներ։ Ըստ թեորեմի ավելի խիստ տարբերակի՝ այս պարզ թվերի հակադարձերի գումարը՝ Պարզ Թիվ -ը տարամետ է, և որ նույն Պարզ Թիվ -ով կազմված տարբեր գծային բազմանդամներ ունեն մոտավորապես նույն համամասնությամբ պարզ թվեր։

Ավելի բարձր աստիճանի բազմանդամների դեպքում պարզ թվերի բաշխման վերաբերյալ առաջ են քաշվել տարբեր ենթադրություններ, սակայն դրանք ապացուցված չեն։ Անհայտ է, թե արդյոք գոյություն ունի քառակուսային բազմանդամ, որը ամբողջ արգումենտների դեպքում անթիվ բազմությամբ պարզ արժեքներ է ընդունում։

Էյլերի թեորեմի անալիտիկ ապացույց

Պարզ թվերի անվերջության Էյլերի ապացույցը դիտարկում է պարզ թվերի հակադարձերի գումարը,

    Պարզ Թիվ 

Էյլերը ցույց է տվել, որ կամայական Պարզ Թիվ  իրական թվի համար գոյություն ունի Պարզ Թիվ  պարզ թիվ, որի համար գումարը մեծ է Պարզ Թիվ -ից։ Սա ցույց է տալիս, որ գոյություն ունեն անթիվ քանակությամբ պարզ թվեր, քանի որ եթե պարզ թվերի քանակը սահմանակ լիներ, գումարը վերջավոր կլիներ և գոյություն կունենար այս գումարից մեծ որևէ Պարզ Թիվ ։ Այս գումարի աճի արագությունը նկարագրում է Մերտենսի երկրորդ թեորեմը։ Համեմատության համար

    Պարզ Թիվ 

գումարը չի ձգտում անվերջության, երբ Պարզ Թիվ -ը ձգտում է անվերջության (տես Բազելի խնդիր)։ Այս իմաստով, պարզ թվերը ավելի հաճախ են հանդիպում, քան բնական թվերի քառակուսիները, չնայած երկու բազմություններն էլ անվերջ են։ Ըստ Բրունի թեորեմի՝ երկվորյակ պարզ թվերի հակադիրների

    Պարզ Թիվ 

գումարը վերջավոր է։ Բրունի թեորեմի պատճառով հնարավոր չէ Էյլերի մեթոդի միջոցով ապացուցել երկվորյակ պարզ թվերի անվերջության ենթադրությունը։

Տրված թվից փոքր պարզ թվերի քանակ

Պարզ թվերի քանակը մոտարկող Պարզ Թիվ  և Պարզ Թիվ  ֆունկցիաների սխալը։ Երկու ֆունկցիաների սխալներն էլ ձգտում են զրոյի, երբ Պարզ Թիվ -ը ձգտում է անվերջության, բայց լոգարիթմական ֆունկցիան ավելի արագ է զուգամիտում զրոյի։

Պարզ թվերի բաշխման Պարզ Թիվ  ֆունկցիան սահմանված է որպես Պարզ Թիվ -ը չգերազանցող պարզ թվերի քանակ։ Օրինակ, Պարզ Թիվ , քանի որ գոյություն ունի 11-ից փոքր կամ հավասար 5 պարզ թիվ։ Մեյսել-Լեմերի ալգորիթմի միջոցով հնարավոր է հաշվել Պարզ Թիվ -ի արժեքը ավելի արագ, քան մինչև Պարզ Թիվ  բոլոր պարզ թվեր հաշվելը։ Պարզ թվերի թեորեմը ցույց է տալիս, որ Պարզ Թիվ -ը ասիմպտոտիկ է Պարզ Թիվ -ին, ինչը նշանակվում է՝

    Պարզ Թիվ 

և նշանակում է, որ Պարզ Թիվ -ի և աջ կոտորակի հարաբերությունը ձգտում է 1-ի, երբ Պարզ Թիվ -ը ջգտում է անվերջության։ Սա նշանակում է, որ պատահականորեն ընտրված Պարզ Թիվ -ից փոքր թվի պարզ լինելու հավանականությունը մոտավորապես հակադարձ համեմատական է թվի թվանշանների քանակին։ Դա նաև նշանակում է, որ Պարզ Թիվ -րդ պարզ թիվը համեմատական է Պարզ Թիվ -ին, հետևաբար՝ հաջորդական պարզ թվերի տարբերության միջինը համեմատական է Պարզ Թիվ -ի։ Պարզ Թիվ -ի ավելի ճշգրիտ մոտարկում տրվում է հետևյալ լոգարիթմական ինտեգրալով՝

    Պարզ Թիվ 

Թվաբանական պրոգրեսիաներ

Թվաբանական պրոգրեսիան թվերի վերջավոր կամ անվերջ հաջորդականություն է, որի բոլոր հաջորդական անդամները նույն տարբերությունն ունեն։ Այս տարբերությունը կոչվում է հաջորդականության տարբերություն։ Օրինակ՝

    3, 12, 21, 30, 39, ...,

անվերջ թվաբանական հաջորդականություն է, որի տարբերությունը 9 է։ Սահմանումից հետևում է, որ թվաբանական պրոգրեսիայի կամայական անդամի և տարբերության հարաբերության մնացորդը նույնն է, այս դեպքում՝ 3։ Քանի որ և՛ տարբերությունը, և՛ մնացորդը բաժանվում են 3-ի, հետևաբար հաջորդականության յուրաքանչյուր անդամ բաժանվում է 3-ի։ Սա նշանակում է, որ հաջորդականությունը պարունակում է միայն մեկ պարզ թիվ՝ 3-ը։ Ընդհանուր դեպքում,

    Պարզ Թիվ 

անվերջ հաջորդականությունը կարող է պարունակել մեկից ավելի պարզ թվեր, եթե դրա Պարզ Թիվ  մնացորդը և Պարզ Թիվ  տարբերությունը փոխադարձ պարզ են։ Թվաբանական պրոգրեսիաների մասին Դիրիխլեի թեորեմը ցույց է տալիս, որ եթե դրանք պարզ են, ապա հաջորդականությունը պարունակում է անթիվ բազմությամբ պարզ թվեր։

Պարզ թվերը 9 տարբերությամբ թվաբանական պրոգրեսիայում։ Բարակ հորիզոնական գոտու յուրաքանչյուր տող ցույց է տալիս 9 հնարավոր մնացորդներից մեկը, իսկ պարզ թվերը ներկված են կարմիրով։ 0, 3 կամ 6 մնացորդով պրոգրեսիաները պարունակում են միայն մեկ պարզ թիվ՝ 3, իսկ 2, 4, 5, 7 և 8 մնացորդով պրոգրեսիաները պարունակում են անթիվ բազմությամբ պարզ թվեր։

Գրին-Տաո թեորեմը ցույց է տալիս, որ գոյություն ունեն միայն պարզ թվեր պարունակող կամայական երկարությամբ թվաբանական հաջորդականություններ։

Նշումներ

Ծանոթագրություններ

Tags:

Պարզ Թիվ Սահմանում և օրինակներՊարզ Թիվ ՊատմությունՊարզ Թիվ Տարրական հատկություններՊարզ Թիվ Անալիտիկ հատկություններՊարզ Թիվ ՆշումներՊարզ Թիվ ԾանոթագրություններՊարզ Թիվ1 (թիվ)ԱրտադրյալԲաղադրյալ թիվԲնական թիվԹվաբանության հիմնական թեորեմԹվերի տեսություն

🔥 Trending searches on Wiki Հայերեն:

Անկլավ և էքսկլավԱշոտ Ա ՄեծՇիզոֆրենիաԱլավերդիԵղիշե ՉարենցՎիրուսներՊատվի համար (դրամա)Հայաստանի Ազգային ժողովՆարցիստիկ անձնային խանգարումՀեպատիտ BԱվետիք ԻսահակյանՍահմանական եղանակԱստիգմատիզմՍտորոգյալՄԻԱՎՀաղթանակի օրԿարեն ԴեմիրճյանՓորլուծությունԵվրասիական տնտեսական միությունԳարեգին ԲՀայոց Ցեղասպանության զոհերի հիշատակի օրԱնլռելի զանգակատունԶատիկԱյրին (նորավեպ)ՄայրցամաքԳուլիվերի ճանապարհորդություններըՎինսենթ վան ԳոգԾիրանի փողըՍպիտակավոր վանքԳլխավոր էջՀակասնկային դեղերՋրծաղիկԻսրայելՎիգեն ԽեչումյանՄովսես ԽորենացիՄակդիրԹռչուններԱրամ ԽաչատրյանԻլհամ ԱլիևՔաջ Նազար (հեքիաթ-դրամա)ՔաղցկեղԸղձական եղանակՀայաստանի ազգային հերոսՐաֆֆիԵրկրի օրՀամաչափությունՄարդու առնանդամԱռաքյալը (Մուրացան)Սերգեյ ՓարաջանովՀեպատիտ CՍտրեպտոկոկային ֆարինգիտՎազգեն Ա ԲուխարեստցիՀայկական անմոռուկ (խորհրդանիշ)ԵրկրաշարժԴաշտանային ցիկլԿապանՍեռական ճանապարհով փոխանցվող վարակներԱնանիա ՇիրակացիԽոյ (կենդանակերպի նշան)Հայ գրերի գյուտԵռանկյունՔըրք ՔըրքորյանՊետությունԹռչկանի ջրվեժՄարմաշենի վանքԿոտայքի մարզՎարդանանց պատերազմՀոմանիշՀուլիոս ԿեսարՍահմանների դեմարկացիա և դելիմիտացիաՀիպոթիրեոզՀովհաննավանքԽորանիստ երակների թրոմբոզՆախադաշտանային համախտանիշՇվեյցարիա🡆 More