Բազմություն

Բազմություն, իրարից տարբեր օբյեկտների որոշակի հավաքածու, որն իր հերթին դիտարկվում է որպես օբյեկտ։ Բազմության մեջ օբյեկտների դասավորությունը նշանակություն չունի։ Բազմությունները կարող են նշվել ձևավոր փակագծերում՝ թվարկելով բազմության տարրերը։ Օրինակ՝ 2, 4, և 6 տարբեր օբյեկտներ են, երբ դրանք դիտարկվում են առանձին-առանձին, երբ դրանք դիտարկվում են որպես համախմբություն կամ հավաքածու, ապա այն երեք տարրերից բաղկացած պարզ բազմություն է , որը կարող է ներկայացվել նաև , , , կամ տեսքով։ Բազմությունները կարող են նաև նշանակվել լատինատառ մեծատառերով՝ A , B , C .

Բազմություն
Բազմանկյունների բազմություն Էյլերի դիագրամի վրա

Բազմությունները մաթեմատիկայի ամենաֆունդամենտալ հասկացություններից են։ Զարգանալով 19-րդ դարի վերջում, բազմությունների տեսությունը այժմ մաթեմատիկայի անբաժան մասն է։ Մաթեմատիկական կրթության մեջ, տարրական թեմաները այնպիսիք, ինչպիսին Վեն դիագրամներն են, ուսուցանվում են դպրոցական տարիքում, մինչդեռ ավելի բարձրակարգ հասկացությունները ուսուցանվում են որպես համալսարանական աստիճանի մաս։

Ծագումնաբանություն

Գերմաներեն Menge բառը, որ հայերենով թարգմանվում «բազմություն» կամ հավաքածու, հորինել է Բեռնարդ Բոլցանոն և հիշատակել իր Անվերջության պարադոքս աշխատության մեջ։

Սահմանում

Բազմություն 
Հատված Գեորգ Կանտորի բնօրինակ սահմանման՝ թարգմանությամբ: «Menge» գերմաներեն բառը «set»-ը այստեղ թարգմանվում է «հավաքածու» բառով

Բազմությունը, դա մեր ընկալման (Anschauung) և մեր մտքի մի շարք որոշակի, օբյեկտների խումբ է, որոնք կոչվում են հավաքածուի տարրեր։ Օբյեկտները, որ միանալով բազմություն են կազմում (նաև հայտնի որպես բազմության տարրեր կամ անդամներ), կարող են լինել ամեն ինչ՝ թվեր, մարդիկ, այբուբենի տառեր, այլ բազմություններ և այլն։ Բազմությունների տեսության հիմնադիրնեից մեկը՝ Գեորգ Կանտորը իր Beiträge zur Begründung der transfiniten Mengenlehre սկզբում բազմության հետևյալ սահմանումն է տվել։

Բազմությունները սովորաբար նշանակվում են մեծատառերով։ A և B բազմությունները հավասար են այն և միայն այն ժամանակ, երբ ճշգրիտ միևնույն տարրերից են կազմված։

Տեխնիկական պատճառներից ելնելով, Կանտորի սահմանումը չեղարկվեց որպես ոչ ադեկվատ, այսօր, առավել ճշգրտություն պահանջող կոնտեքստում օգտագործվում է բազմությունների աքսիոմատիկ տեսությունը, որտեղ բազմության գաղափարըն ընդունվում է որպես պարզագույն հասկացություն, իսկ դրա հատկությունները սահմանվում են որպես աքսիոմների հավաքածու։ Ամենահիմնական հատկություններն են՝ բազմությունն ունի տարրեր և երկու բամություն համարժեք են, այն և միայն այն դեպքում, երբ մեկի յուրաքանչյուր տարր նաև երկրորդի տարր է։

Բազմության նշում

Բազմության անդամների նկարագրման երկու տարածված եղանակ գոյություն ունի․ Ռոսթերի նշանակում և բազմության կառուցման նշանակում։ Սրանք համապատասխանաբար բազմությունների նկարագրման քստենսիոն և ինտենսիոն սահմանումների օրինակներ են։

Ռոսթերի նշանակում

Ռոսթերի նշանակումը (կամ թվարկումով նշանակումը) դա բազմության յուրաքանչյուր անդամի թվարկման մեթոդ է։ Ավելի ստույգ, ռոսթեր նշանակման մեջ (ընդարձակ և բովանդակային նկարագրման օրինակ), բազմությունը ներկայացվում է ձևավոր փակագծերում անդամների թվարկմամբ․

    A = {4, 2, 1, 3}
    B = {կապույտ, սպիտակ, կարմիր}։

Մեծաթիվ տարրերով բազմությունների համար, անդամների թվարկումը կարելի է կրճատել։ Օրինակ, առաջին հազար դրական թվերի բազմությունը կարելի է ներկայացնել այսպես․

    {1, 2, 3, ..., 1000},

որտեղ («...») - ը ցույց է տալիս, որ ցուցակը շարունակվում է ըստ ցուցադրված օրինաչափության։

Ռոսթերի նշանակման մեջ, անդամի կրկնություննը բազմությունը չի փոխում, օրինակ {11, 6, 6} և {11, 6} բազմությունները նույնն են։} Ավելին, բազմության տարրերի թվարկման կարգը կարևոր չէ (ի տարբերություն հաջորդականության կամ կորտեժ, ուստի {6, 11} միևնույն հավաքածուն է։

Բազմություն կառուցողի ներկայացում

Այս ներկայացման մեջ բազմությունը որոշվում էորպես ընտրություն ավելի մեծ բազմությունից, որ սահմանվում է անդամները ներառող պայմանով։ Օրինակ, F բազմությունը կարող է նկարագրվել հետևյալ կերպ․

    Բազմություն 

Այս ներկայացման մեջ, ուղղահայաց գիծը («|») նշանակում է «այնպիսին ինչպես», և նկարագրությունը կարող է մեկնաբանվել որպես «Fn այն բոլոր դրական ամբողջ թվերի բազմությունն է, որոնք ընկած են 0 ից 19 միջակայքում, ներառյալ 19-ը»։ Երբեմն ուղղահայաց գծի փոխարեն օգտագործվում է վերջակետի («:») նշանը։

Բազմություն կառուցողի գրառումը բովանդակային սահմանման օրինակ է։

Բազմության ներկայացման այլ եղանակներ

Բազմության ներկայացման այլ եղանակը սեմանտիկ նկարագրության կիրառումն է․

    A -ն բազմություն է, որի անդամները առաջին չորս դրական ամբողջ թվերն են։
    B -ն Ֆրանսիայի դրոշի գույների բազմությունն է։

Սա բովանդակային նկարագրության այլ օրինակ է։

Անդամակցություն

Եթե B-ն բազմություն է և xB-ի օբյեկտներից մեկն է, դա գրառվում է այսպես xB և կարդացվում՝ "x-ը B-ի տարր է", ինչպես "x-ը պատկանում է B-ին", կամ "x-ը B-ի մեջ է"։ Եթե yB-ի անդամ չէ, ապա դա գրառվում է այսպես yB, կարդացվում «y-ը B-ի տարր չի», կամ «y -ը B-ում չէ»։

Օրինակ, A = {1, 2, 3, 4}, B = {կապույտ, սպիտակ, կարմիր}, և F = {n | n դրական ամբողջ թիվ է, և 0 ≤ n ≤ 19},

    4 ∈ A և 12 ∈ F; և
    20 ∉ F կանաչը ∉ B.

Ենթաբազմություններ

Եթե A-ի յուրաքանչյուր տարր առկա է նաև B-ում, ապա ABենթաբազմություն է, գրառվում է AB (արտասանվում է՝ A -ն պարունակվում է B-ում)։ Սրան համարժեք գրառում է՝ BA (արտանսանվում է՝ B -ն A-ի բազմություն է, B ներառում է իր մեջ A-ն, կամ B -ն պարունակում է իր մեջ A-ն։ ⊆ նշանով բազմությունների հարաբերությունը կոչվում է ներառում կամ պարունակություն։ Երկու բազմություն հավասար են, եթե նրանք մեկը մյուսին պարունակում են․ AB և BA համարժեք է A = B։

Եթե AB-ի ենթաբազմություն է, սակայն հավասար չէ B-ին, ապա A-ն կոչվում է Bիսկական ենթաբազմություն, գրառվում է AB, կամ պարզապես AB , կամ BA (B-ն A-ի իսկական բազմություն է, BA

AB և BA արտահայտությունները տարբեր հեղինակների կողմից տարբեր կերպ են օգտագործվում, որոշ հեղինակներ դրանք օգտագործում են նկատի ունենալով նույնը ինչ որ AB (համապատասխանաբար BA), մինչդեռ մյուսներն օգտագործում են դրանք `նույն իմաստով, ինչ AB (respectively BA

Բազմություն 
ABենթաբազմությունն է

Օրինակներ։

  • Բոլոր մարդկանց բազմությունը բոլոր կաթնասունների բազմության իսկական ենթաբազմությունն է։
  • {1, 3} ⊆ {1, 2, 3, 4}։
  • {1, 2, 3, 4} ⊆ {1, 2, 3, 4}։

Կա եզակի բազմություն՝ առանց անդամների, կոչվում է դատարկ բազմություն (կամ զրո բազմություն), որը նշանակվում է ∅ սիմվոլով կամ {}։ Դատարկ բազմությունը յուրաքանչյուր բազմության ենթաբազմություն է, և յուրաքանչյուր բազմություն ինքն իր ենթաբազմությունն է։

  • ∅ ⊆ A։
  • AA։

Բաժիններ

S բազմության բաժինը նրա ոչ դատարկ ենթաբազմությունն է, այնպիսին, որ S-ի յուրաքանչյուր x տարր այդ ենթաբազմություններից ճիշտ մեկի տարր է։ Այսինքն, այդ ենթաբազմությունների ցանկացած զույգ չեն հատվում (այն իմաստով, որ բաժինների ցանկացած երկուսը ընդհանուր տարր չունեն, և բաժանման բոլոր ենթաբազմությունների գումարը S-ն է։

Հզոր բազմություններ

S բազմության բոլոր ենթաբազմությունների բազմությունը կոչվում է հզոր բազմություն։ Հզոր բազմությունը պարունակում է S-ը և դատարկ բազմությունը, քանի որ դրանք S-ի ենթաբազմություններ են։ Օրինակ՝ {1, 2, 3} բազմության հզոր բազմությունը հետևյալ {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅} բազմությունն է։ S բազմության հզոր բազմությունը նշանակվում է P(S

n վերջավոր տարրերով բազմության հզոր բազմությունը ունի 2n տարրեր։ Օրինակ՝ {1, 2, 3} բազմությունն ունի երեք տարր և վերևում ներկայացված հզոր բազմությունն ունի 23 = 8 տարր։

Անվերջ (հաշվելի, թե՝ անհաշվելի ) բազմության հզոր բազմությունն անհաշվելի է։ Ավելին, բազմության հզոր բազմությունը միշտ խիստ «մեծ» է սկզբնական բազմությունից, այն իմաստով, որ հնարավոր չէ S-ի յուրաքանչյուր տարր P (S) ճշգրիտ մեկ տարրի հետ զուգակցել։

Բազմության հզորություն

Դատարկ բազմության հզորությունը հավասար է զրոյի։

Որոշ բազմությունների հզորությունն անվերջ է։ Օրինակ, N բնական թվերի բազմությունն անվերջ է։ Որոշ անվերջ հզորություններ ավելի մեծ են մյուսներից։ Օրինակ, իրական թվերի բազմությունն ունի ավելի մեծ հզորություն, քան բնական թվերինը։ Այնուամենայնիվ կարելի է ցույց տալ, որ ուղիղ գծի հզորությունը (ուղղի կետերի քանակը) նույնն է ինչ որ այդ ուղղի ցանկացած հատվածի, ամբողջ հարթության և նույնիսկ ցանկացած վերջավոր Էվկլիդյան տարածության։

Հատուկ բազմություններ

Բազմություն 
ℕ բնական թվերը ℤ ամբողջ թվերի մաս են կազմում, որոնք էլ ℚ ռացիոնալ թվերի մաս են կազմում, սրանք էլ ℝ իրական թվերի, որոնք և ℂ կոմպլեքս թվերի մաաս են կազմում։

Մի շարք բազմություններ, կամ բազմությունների տեսակներ, որոնք մաթեմատիկական մեծ կարևորություն ունեն և այնպիսի հաճախականությամբ են հիշատակվում, որ իրենց իդենտիֆիկացմանհամար ձեռք են բերել հատուկ անուններ և նշանակումներ։Այդպիսի բազմություններից է դատարկ բազմությունը՝{ } կամ ∅. Ճիշտ մեկ x տարրով բազմությունը միավոր բազմություն է, կամ սինգլթոն {x}, այն տարբերվում է x-ից։

Այս բազմություններից շատերը ներկայացվում են թավատառ (P) կամ կիսաթավատառ (ℙ)։ These include:

  • P կամ ℙ-ով է նշանակվում պարզ թվերի բազմությունը․ P = {2, 3, 5, 7, 11, 13, 17, ...}.
  • N կամ ℕ-ով է նշանակվում բնական թվերի բազմությունը․ N = {0, 1, 2, 3, ...} (sometimes defined excluding 0).
  • Z կամ ℤ-ով է նշանակվում ամբողջ թվերի բազմությունը (դրական, բացասական և զրո)։ Z = {..., −2, −1, 0, 1, 2, ...}.
  • Q կամ ℚ-ով է նշանակվում ռացիոնալ թվերի բազմությունը (բոլոր կանոնավոր և անկանոն կոտորակների բազմությունը)․ Q = {a/b | a, bZ, b ≠ 0}. Օրինակ, 1/4 ∈ Q և 11/6 ∈ Q. Բոլոր ամբողջ թվերը այս բազմության մեջ են, քանի որ յուրաքանչյուր a թիվ կարելի է ներկայացնել կոտորակի տեսքով՝ a/1 (ZQ
  • R կամ ℝ-ով է նշանակվում բոլոր իրական թվերի բազմությունը։ Այս բազմությունը ներառում է բոլոր ռացիոնալ և իռացիոնալ թվերը (այսինքն հանրահաշվական թվերը չեն կարող ներկայացվել կոտորակի տեսքով, ինչպես 2, ինչպես նաև տրանսցենդենտ թվերը, ինչպիսին են π, e
  • C or ℂ-ով է նշանակվում բոլոր կոմպլեքս թվերի բազմությունը․ C = {a + bi | a, bR}. Օրինակ, 1 + 2iC.
  • H կամ ℍ-ով է նշանակվում բոլոր քվատերնոների բազմությունը․ H = {a + bi + cj + dk | a, b, c, dR}. Օրինակ, 1 + i + 2jkH։

Վերոնշյալ բոլոր բազմություններն անվերջ են և յուրաքանչյուրը իր ստորևի իսկական ենթաբազմություն է։ Պարզ թվերը Թվերի տեսությունից և հարակից ոլորտներից դուրս ավելի հազվադեպ են օգտագործվում։

Դրական կամ բացասական բազմությունները երբեմն նշվում են վերատառ համապատասխանաբար դրական և բացասական նշաններով։ Օրինակ, ℚ+ ներկայացնում է դրական ռացիոնալ թվերի բազմությունը։

Հիմնական գործողություններ

Գոյություն ունեն մի քանի հիմնարար գործողություններ տված բազմություններից նոր բազմություններ կառուցելու համար։

Միավորումներ

Բազմություն 
A և Bմիավորումը նշանակվում է AB

Երկու բազմություն կարելի գումարել միմյանց։ A և B-ն կարելի է միավորումը՝ A ∪ B, այն բազմություն է, որի անդամները բոլոր այն օբյեկտներն են, որ կամ A-ի կամ B-ի անդամներ են։

Օրինակներ։

  • {1, 2} ∪ {1, 2} = {1, 2}.
  • {1, 2} ∪ {2, 3} = {1, 2, 3}.
  • {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

Միավորման մի քանի հիմնական հատկություններ․

  • AB = BA.
  • A ∪ (BC) = (AB) ∪ C.
  • A ⊆ (AB).
  • AA = A.
  • A ∪ ∅ = A.
  • AB այն և միայն այն դեպքում, երբ AB = B.

Հատում

Նոր բազմություն կարելի է կառուցել նաև տարրերից, որոնք ընդհանուր են երկու բազմությունների համար։ A և B բազմությունների հատումը նշանակվում է AB, և իրենից ներկայացնում է այն օբյեկտները, որոնք միաժամանակ A և B բազմությունների անդամ են։ Եթե AB = ∅, ապա A և B բազմությունները չեն հատվում։

Բազմություն 
A and B բազմությունների հատումը նշանակվում է AB.

Օրինակներ։

  • {1, 2} ∩ {1, 2} = {1, 2}.
  • {1, 2} ∩ {2, 3} = {2}.
  • {1, 2} ∩ {3, 4} = ∅.

Հատումների մի քանի հիմնական հատկություններ

  • AB = BA.
  • A ∩ (BC) = (AB) ∩ C.
  • ABA.
  • AA = A.
  • A ∩ ∅ = ∅.
  • AB այն և միայն այն դեպքում, երբ AB = A.

Լրացումներ

Երկու բազմություններ կարող են նաև մեկը մյուսից "հանել"։ The relative complement of B-ի հարաբերական լրացումը A-ում (նաև անվանվում է A և B-ի բազմությունների տարբերություն), գրառվում է A \ B (կամ AB), դա is the set of all elements that are members of A,-ի բոլոր այն տարրերի բազմությունն է, որոնք B-ի անդամ չեն։ Թույլատրելի է նաև բազմությունից հանել անդամներ, որոնք տվյալ բազմության անդամ չեն, այնպես որ կանաչ տարրը հանել {1, 2, 3}բազմությունից, այս կերպ վարվելը չի ազդի բազմության տարրերի վրա։ Որոշակի պայմաններում քննարկվող բոլոր բազմությունները ենթադրվում են որպես U մաթեմատիկական տարածության ենթաբազմություններ. Այդ դեպքում U \ A-ը կոչվում է Aբացարձակ լրացում կամ պարզապես լրացումև նշանակվում որպես A′ կամ Ac

  • A′ = U \ A

Օրինակներ։

  • {1, 2} \ {1, 2} = ∅.
  • {1, 2, 3, 4} \ {1, 3} = {2, 4}.
  • Եթե U-ն ամբողջ թվերի բազմությունն է, E-ն զույգ թվերի և O-ի, ապա կենտ թվերի բազմությունը կլինի U \ E = E′ = O.

Լրացման մի քանի հիմնական հատկություններն են՝

  • A \ BB \ A, երբ AB։
  • AA′ = U.
  • AA′ = ∅.
  • (A′)′ = A.
  • ∅ \ A = ∅.
  • A \ ∅ = A.
  • A \ A = ∅.
  • A \ U = ∅.
  • A \ A′ = A և A′ \ A = A′.
  • U′ = ∅ և ∅′ = U.
  • A \ B = AB.
  • Եթե AB, ապա A \ B = ∅.

A, B բազմությունների համար սահմանված լրացման ընդլայնումը սիմետրիկ տարբերությունն է և գրառվում է․

    Բազմություն 

Օրինակ, {7, 8, 9, 10} և {9, 10, 11, 12} բազմությունների սիմետրիկ տարբերությունը {7, 8, 11, 12} բազմությունն է։

Դեկարտյան արտադրյալ

Նոր բազմություն կարելի է կառուցել միավորելով մի բազմության յուրաքանչյուր տարր, միավորելով մեկ այլ բազմության յուրաքանչյուր տարրի հետ։ Երկու A և B բազմությունների Դեկարտյան արտադրյալ A × B նշանակմամբ, դա բոլոր (a, b) կարգավորված զույգերի բազմությունն է, այնպես որ a A-ի անդամ է և bB-ի անդամ է։

Օրինակներ․

  • {1, 2} × {կարմիր, սպիտակ, կանաչ} = {(1, կարմիր), (1, սպիտակ), (1, կանաչ), (2, կարմիր), (2, սպիտակ), (2, կանաչ)}։
  • {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.
  • {a, b, c} × {d, e, f} = {(a, d), (a, e), (a, f), (b, d), (b, e), (b, f), (c, d), (c, e), (c, f)}.

Դեկարտյան արտադրյալի որոշ հիմնական հատկություններ՝

  • A × ∅ = ∅.
  • A × (BC) = (A × B) ∪ (A × C).
  • (AB) × C = (A × C) ∪ (B × C).

Թող A և B-ն վերջավոր բազմություններ են, ապա դեկարտյան արտադրյալի հզորությունը հավասար է այդ բազմությունների հզորությունների արտադրյալը․

  • | A × B | = | B × A | = | A | × | B |.

Կիրառություններ

Բազմությունների տեսությունը դիտարկվում է որպես հիմք, որից բոլոր մաթեմատիկայի մոլոր ճյուղերը կարելի է դուրս բերել։ Օրինակ՝ աբստրակտ հանրահաշվի հանրահաշվական կառուցվածքները, ինչպիսիք են խմբերը, դաշտերը, օղակները բազմություններ են մեկ կամ մի քանի գործողություններ կատարելու ժամանակ։

Բազմությունների տեսության գլխավոր կիրառություններից մեկը հարաբերությունների կառուցումն է։ A տիրույթի հարաբերությունը B համատիրույթի հետ A × B' դեկարտյան արտադրյալի ենթաբազմություն է։

Առընչություններ բազմությունների միջև

Բազմություն 
Էյլերի դիագրամ Բազմություն համար

Բազմություն  և Բազմություն  երկու բազմությունները կարող են միմյանց հետ տարբեր առընչություն ունենալ

  • Բազմություն  ընդգրկում Բազմություն , եթե Բազմություն -ի յուրաքանչյուր անդամը պատկանում է նաև Բազմություն  բազմությանը։
      Բազմություն 
  • Բազմություն  ընդգրկում է Բազմություն , եթե Բազմություն  պատկանում է Բազմություն :
      Բազմություն 
  • Բազմություն  հավասար է Բազմություն , եթե Բազմություն  և Բազմություն  ընդգրկում են մեկը մյուսին։
      Բազմություն 
    • Ցանկացած բազմության համար Բազմություն 
    • Եթե Բազմություն , ապա Բազմություն 
    • Եթե Բազմություն , Բազմություն , ապա Բազմություն .
  • Բազմություն  խստորեն պատկանում է Բազմություն , եթե Բազմություն պատկանում է Բազմություն , բայց նրան հավասար չէ։
      Բազմություն 
  • Բազմություն  խստորեն պատկանում է Բազմություն , եթե Բազմություն  խստորեն պատկանում է Բազմություն :
      Բազմություն 
  • Բազմություն  և Բազմություն  չեն հատվում,եթե ընդհանուր անդամներ չունեն։
      Բազմություն  և Բազմություն  չեն հատվում Բազմություն 
  • Բազմություն  և Բազմություն  գտնվում են ընդհանուր վիճակում, եթե գոյություն ունի անդամ, որ պատկանում է միայն Բազմություն  բազմությանը, անդամ, որ պատկանում է միայն Բազմություն -ին և անդամ, որ պատկանում է երկուսին էլ։
      Բազմություն  և Բազմություն  գտնվում են ընդհանուր վիճակում Բազմություն  Բազմություն 

Գործողություններ բազմությունների հետ

Բազմություն 
Վենի դիագրամ Բազմություն համար
Բազմություն 
Վենի դիագրամ Բազմություն համար
Բազմություն 
Վենի դիագրամ Բազմություն համար
Բազմություն 
Վենի դիագրամ Բազմություն համար
  • հատում․
      Բազմություն .
  • միավորում․
      Բազմություն .
    Եթե Բազմություն  և Բազմություն  բազմությունները չեն հատվում, ապա Բազմություն . Նրանց միավորումը նշանակում են նաև հետյալ ձևով՝ Բազմություն 
  • տարբերություն․
      Բազմություն .
  • համաչափ տարբերություն․
      Բազմություն 
        Բազմություն 
          Բազմություն .
  • դեկարտյան կանմ ուղիղ արտադրյալ․
      Բազմություն .
Բազմություն 
Վենի դիագրամ Բազմություն համար

Բազմության տարրեր կամ անդամներ կարող են լինել՝ թվեր, մարդիկ, այբուբենի տառեր, ուրիշ բազմություններ և այլն։ Բազմությունները պայմանականորեն նշանակվում են մեծատառերով։ A և B բազմությունները հավասար են այն և միայն այն դեպքում, երբ նրանք բաղկացած են ճիշտ նույն էլեմենտներից։

Ծանոթագրություններ

Tags:

Բազմություն ԾագումնաբանությունԲազմություն ՍահմանումԲազմություն Բազմության նշումԲազմություն ԱնդամակցությունԲազմություն Բազմության հզորությունԲազմություն Հատուկ բազմություններԲազմություն Հիմնական գործողություններԲազմություն ԿիրառություններԲազմություն Առընչություններ բազմությունների միջևԲազմություն Գործողություններ բազմությունների հետԲազմություն ԾանոթագրություններԲազմություն

🔥 Trending searches on Wiki Հայերեն:

Դերբայական դարձվածԼևոն ԲՄարսողական համակարգԱնուղղակի խնդիրՆյարդային համակարգՍևրի պայմանագիրԹռչուններԳուրգեն ՄահարիՄինաս ԱվետիսյանՀայրենական մեծ պատերազմՄեղրՎազգեն ՍարգսյանՄիքայել ՆալբանդյանԹանկարժեք և կիսաթանկարժեք քարերԿարմիր գլխարկԶինվորական կոչումներԷրիթրոցիտներՍեռական ճանապարհով փոխանցվող վարակներԱստվածաշունչՆիկոլ ՓաշինյանԹոմաս ԷդիսոնՀայաստանի Հանրապետության վարչատարածքային բաժանումՍասունցի ԴավիթԹոքի քաղցկեղԲնական թիվԶապել ԵսայանԼենկթեմուրՈրոտանի կիրճԲարդ նախադասությունՍիֆիլիսՎրաստանՄխիթարյան միաբանությունՄիքայել ԱլիմյանԶվարթնոցի տաճարԱնորոշ դերբայՄարդու պապիլոմավիրուսՀայրենական մեծ պատերազմին մասնակցած հայ գեներալներ և ծովակալներՀեշտոցային արտադրությունՀամբարձում (տոն)Սեբաստիան ՄարոքինՄիավորված ազգերի կազմակերպությունՀուլիոս ԿեսարՄաշկաբորբՀանգՇաղկապենաբորբԹբիլիսիԴիզայնՁեռնաշարժությունՍմբատաբերդԱ. Սպենդիարյանի անվան օպերայի և բալետի ազգային ակադեմիական թատրոնՆախադասության գլխավոր անդամներԽաչքարՔրոմոսոմՀայաստանի բուհերի ցանկՀարցական նշանՏավուշի մարզԲառակապակցությունՏեսակարար ջերմունակությունԽոսքի մասերՀայոց ցեղասպանությունԱմերիկայի հայտնագործումՄիջին ականջի բորբոքումՊարագաներՁվարանի կիստաԷյֆելյան աշտարակՀայկական դրամՍիլվա ԿապուտիկյանՑորենՍրտային անբավարարությունՍասունցի Դավիթ (արձան, Երևան)ՍելեկցիաՐաֆֆիԱրհեստական բանականությունԶանգվածի պահպանման օրենք🡆 More