Komplexe Zahl: Zahl, die einen Realteil und einen Imaginärteil umfasst

Die komplexen Zahlen stellen eine Erweiterung der reellen Zahlen dar.

Ziel der Erweiterung ist es, algebraische Gleichungen wie bzw. lösbar zu machen. Im Gegensatz zu den Erweiterungen reicht es hier nicht mehr aus, die Zahlen „linksseitig“ zu erweitern (ganze Zahlen) oder „dichter zu stopfen“ (rationale und reelle Zahlen), sondern man wechselt von einer Zahlengeraden zu einer Zahlenebene.

Der Buchstabe C mit Doppelstrich
steht für die Menge der komplexen Zahlen
Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln
Die komplexen Zahlen beinhalten die reellen Zahlen , die die rationalen Zahlen beinhalten, zu denen wiederum die ganzen Zahlen und die natürlichen Zahlen gehören.

Da die Quadrate aller reellen Zahlen größer oder gleich 0 sind, kann die Lösung der Gleichung keine reelle Zahl sein. Man braucht eine ganz neue Zahl, die man üblicherweise nennt, mit der Eigenschaft Diese Zahl wird als imaginäre Einheit bezeichnet.

Komplexe Zahlen werden nun als Summe definiert, wobei und reelle Zahlen sind und die oben definierte imaginäre Einheit ist. Auf die so definierten komplexen Zahlen lassen sich die üblichen Rechenregeln für reelle Zahlen anwenden, wobei wie eine Konstante verwendet wird und durch ersetzt werden kann und umgekehrt. Für die Menge der komplexen Zahlen wird das Symbol ( als Unicode-Zeichen U+2102, siehe Buchstaben mit Doppelstrich) verwendet.

Der so konstruierte Zahlenbereich der komplexen Zahlen bildet einen Erweiterungskörper der reellen Zahlen und hat eine Reihe vorteilhafter Eigenschaften, die sich in vielen Bereichen der Natur- und Ingenieurwissenschaften als äußerst nützlich erwiesen haben. Einer der Gründe für diese nützlichen Eigenschaften ist die algebraische Abgeschlossenheit der komplexen Zahlen. Dies bedeutet, dass jede algebraische Gleichung positiven Grades über den komplexen Zahlen eine Lösung besitzt, was für reelle Zahlen nicht gilt. Diese Eigenschaft ist der Inhalt des Fundamentalsatzes der Algebra. Ein weiterer Grund ist ein Zusammenhang zwischen trigonometrischen Funktionen und der Exponentialfunktion (Eulerformel), der über die komplexen Zahlen hergestellt werden kann. Ferner ist jede auf einer offenen Menge einmal komplex differenzierbare Funktion dort auch beliebig oft differenzierbar – anders als in der Analysis der reellen Zahlen. Die Eigenschaften von Funktionen mit komplexen Argumenten sind Gegenstand der Funktionentheorie, auch komplexe Analysis genannt.

In der Elektrotechnik wird stattdessen der Buchstabe verwendet, um einer Verwechslung mit einer (durch oder bezeichneten) von der Zeit abhängigen Stromstärke vorzubeugen, allerdings erhöht dies die Verwechslungsgefahr mit der Stromdichte in der Elektrodynamik.

Definition

Die komplexen Zahlen lassen sich als Zahlbereich im Sinne einer Menge von Zahlen, für die die Grundrechenarten Addition, Multiplikation, Subtraktion und Division erklärt sind, mit den folgenden Eigenschaften definieren:

  • Die reellen Zahlen sind in den komplexen Zahlen enthalten. Das heißt, dass jede reelle Zahl eine komplexe Zahl ist.
  • Das Assoziativgesetz und das Kommutativgesetz gelten für die Addition und die Multiplikation komplexer Zahlen.
  • Das Distributivgesetz gilt.
  • Für jede komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  existiert eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , sodass: Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
  • Für jede von Null verschiedene komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  existiert eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , sodass: Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
  • Es existiert eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit der Eigenschaft Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  .
  • Unter allen Zahlbereichen mit den zuvor genannten Eigenschaften sind die komplexen Zahlen minimal.

Die letzte Forderung ist gleichbedeutend damit, dass sich jede komplexe Zahl in der Form Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  (bzw. in verkürzter Notation Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  oder auch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ) mit reellen Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  darstellen lässt. Die imaginäre Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist dabei keine reelle Zahl. Die Existenz eines solchen Zahlbereichs wird im Abschnitt zur Konstruktion der komplexen Zahlen nachgewiesen.

Unter Verwendung der Begriffe Körper und Isomorphie lässt sich das so formulieren: Es gibt minimale Körper, die den Körper der reellen Zahlen und ein Element Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit der Eigenschaft Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  enthalten. In einem solchen Körper hat jedes Element Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  eine und nur eine Darstellung als Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit reellen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  Die komplexen Zahlen sind isomorph zu jedem solchen Körper.

Die Koeffizienten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  werden als Real- bzw. Imaginärteil von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bezeichnet. Dafür haben sich zwei typografische Schreibweisen etabliert:

  • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  (Schreibweise der Operatoren ohne besondere Ausschreibung)
  • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  (Schreibweise der Operatoren in Frakturschrift)

In der Elektrotechnik wird das kleine i schon für zeitlich veränderliche Ströme verwendet (siehe Wechselstrom) und kann zu Verwechslungen mit der imaginären Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  führen. Daher wird in der Elektrotechnik üblicherweise für die imaginäre Einheit die Bezeichnung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gewählt, wie dies auch in der Norm DIN 1302 festgelegt ist.

In der Physik wird zwischen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  für die Stromstärke bei Wechselstrom und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  durch die Art der Darstellung des Buchstabens für die imaginäre Einheit unterschieden. Dies führt durch die Trennung beim aufmerksamen Leser nicht zu Verwechslungen und wird in dieser Form weitgehend sowohl in der physikalisch-experimentellen als auch in der physikalisch-theoretischen Literatur angewandt; handschriftlich ist diese Feinheit allerdings nicht zu halten, weshalb häufig das Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als Symbol für die imaginäre Einheit verwendet wird. Siehe auch: Komplexe Wechselstromrechnung

Komplexe Zahlen können gemäß DIN 1304-1 und DIN 5483-3 unterstrichen dargestellt werden, um sie von reellen Zahlen zu unterscheiden. Siehe auch: Phasor.

Grundlegende Eigenschaften

Darstellung von komplexen Zahlen in der komplexen Zahlenebene

Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
Gaußsche Ebene mit einer komplexen Zahl in kartesischen Koordinaten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und in Polarkoordinaten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Während sich die Menge Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der reellen Zahlen als Punkte auf einer Zahlengeraden darstellen lässt, lässt sich die Menge Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der komplexen Zahlen als Punkte auf einer Ebene (komplexe Ebene, gaußsche Zahlenebene) darstellen. Da die komplexen Zahlen einen zweidimensionalen reellen Vektorraum definieren, kann die komplexe Ebene mit einem kartesischen Koordinatensystem versehen werden, das von den beiden orthogonalen Vektoren Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  aufgespannt wird. Es ist üblich, innerhalb diesem die reellen Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  über eine waagerechte und die imaginären Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  über eine senkrechte Achse darzustellen. Eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  besitzt dann die „horizontale Koordinate“ Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und die „vertikale Koordinate“ Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , wird also mit dem Zahlenpaar Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  identifiziert. Entsprechend bildet Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  eine Basis des Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Vektorraumes Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Gemäß Definition entspricht die Addition komplexer Zahlen einer Vektoraddition, wobei man die Punkte in der Zahlenebene mit ihren Ortsvektoren identifiziert. Die Subtraktion komplexer Zahlen entspricht einer Vektorsubtraktion. Die Multiplikation ist in der gaußschen Ebene eine Drehstreckung, was nach Einführung der Polarform weiter unten klarer werden sollte.

Es gibt mehrere Möglichkeiten der Darstellung von komplexen Zahlen:

  • Darstellung in kartesischen Koordinaten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , gelegentlich auch algebraische Form genannt, als Summe des reellen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und des rein imaginären Anteils Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit folgenden Schreibweisen, also
      Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  oder auch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .
Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
Die Farbdarstellung der komplexen Zahlen­ebene wird häufig zur Veranschaulichung komplexer Funktionen (hier: der Identität) an­gewendet. Die Farbe kodiert das Argument Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und die Helligkeit gibt den Betrag Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  an.
  • Darstellung in Polarkoordinaten bzw. in Polardarstellung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als Produkt des absoluten Betrages Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gedreht um den Winkel Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit folgenden Schreibweisen:
    • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ,
    • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ,
    • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Hierbei wird der Faktor Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als Phasenfaktor und der Winkel Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  auch als Argument der komplexen Zahl (in Polardarstellung) bezeichnet. Hintergrund dieser Darstellung ist die Eulersche Formel, die über die komplexen Zahlen einen fundamentalen Zusammenhang zwischen der natürlichen Exponentialfunktion und den trigonometrischen Funktionen herstellt. Alle oberen Schreibweisen stellen demnach exakt den gleichen Sachverhalt dar. Es ist zu beachten, dass die komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  kein Argument besitzt, weshalb hier keine Darstellung in Polarkoordinaten im oberen Sinne möglich ist.

Eine Umwandlung von kartesischer Form in Polarform ist mittels Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und

Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

möglich. Setzt man Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , ergo Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , so ist der obere Teil dieser Gleichung die Konsequenz aus der Halbwinkelformel

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Die linke Seite lässt sich im „vollen Winkelbereich des Hauptarguments“ Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  unter Anwendung des Arkustangens zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  umformen. Ist hingegen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , also Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  auf der rechten Halbebene, so kann die Gleichung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  vereinfachend auch zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  aufgelöst werden.

Komplexe Konjugation

Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
Eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und die zu ihr konjugiert komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Ändert man das Vorzeichen des Imaginärteils Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  so erhält man die zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  konjugiert komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  (manchmal auch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  geschrieben).

Die Konjugation Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist ein (involutorischer) Körperautomorphismus, da sie mit Addition und Multiplikation verträglich ist, d. h., für alle Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

In der Polardarstellung hat die konjugiert komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bei unverändertem Betrag gerade den negativen Winkel von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  Man kann die Konjugation in der komplexen Zahlenebene also als die Spiegelung an der reellen Achse interpretieren. Insbesondere werden unter der Konjugation genau die reellen Zahlen auf sich selbst abgebildet.

Das Produkt aus einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und ihrer komplex Konjugierten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ergibt das Quadrat ihres Betrages:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Die komplexen Zahlen bilden damit ein triviales Beispiel einer C*-Algebra.

Die Summe aus einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und ihrer komplex Konjugierten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ergibt das 2-Fache ihres Realteils:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Die Differenz aus einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und ihrer komplex Konjugierten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ergibt das Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Fache ihres Imaginärteils:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Als normierter, metrischer und topologischer Raum

Die durch die Abstandsfunktion Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  induzierte Metrik versieht den komplexen Vektorraum Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit seiner Standardtopologie. Sie stimmt mit der Produkttopologie von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  überein, so wie auch die Einschränkung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  auf Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit der Standardmetrik auf Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  übereinstimmt. Der Betrag einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  berechnet sich durch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , wobei der nichtnegative Wert der Quadratwurzel gewählt wird. Zum Beispiel gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Beide Räume, Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  sowie Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , sind vollständig unter diesen Metriken. Auf beiden Räumen lässt sich der topologische Begriff der Stetigkeit zu analytischen Begriffen wie Differentiation und Integration erweitern.

Ordnung

Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist im Gegensatz zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  kein geordneter Körper, d. h., es gibt keine mit der Körperstruktur verträgliche lineare Ordnungsrelation auf Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Von zwei unterschiedlichen komplexen Zahlen kann man daher im Allgemeinen nicht sinnvoll (bezogen auf die Addition und Multiplikation in Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ) festlegen, welche von beiden die „größere“ bzw. die „kleinere“ Zahl ist.

Weitere Eigenschaften

  • Der Körper Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der komplexen Zahlen ist einerseits ein Oberkörper von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , andererseits ein zweidimensionaler Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Vektorraum. Der Isomorphismus Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wird auch als natürliche Identifikation bezeichnet. In der Regel nutzt man dies auch, um Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  formell als Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit der entsprechenden komplexen Multiplikation zu definieren und dann Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  zu setzen. Dabei wird gleichzeitig festgelegt:
  1. Die Drehung der komplexen Ebene am Ursprung um den positiven Winkel Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  führt die positive reelle Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  in die positiv-imaginäre Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  über.
  2. Wenn die positiv-reelle Halbachse in der komplexen Ebene nach rechts geht, dann legt man die positiv-imaginäre Halbachse nach oben. Das ist in Einklang mit dem mathematisch positiven Drehsinn.
  • Die Körpererweiterung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist vom Grad Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ; genauer ist Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  isomorph zum Faktorring Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , wobei Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  das Minimalpolynom von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  über Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist. Ferner bildet Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bereits den algebraischen Abschluss von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .
  • Als Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Vektorraum besitzt Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  die Basis Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Daneben ist Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wie jeder Körper auch ein Vektorraum über sich selbst, also ein eindimensionaler Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Vektorraum mit Basis Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .
  • Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  sind genau die Lösungen der quadratischen Gleichung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . In diesem Sinne kann Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  (aber auch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ) als „Wurzel aus Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln “ aufgefasst werden.

Rechenregeln

Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
Die Addition zweier komplexer Zahlen in algebra­ischen Form Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als Vektor­addition in der komplexen Ebene veranschaulicht.
Da kommutativ, ergibt das Anfügen von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  an Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  das gleiche Ergebnis wie das Anfügen von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  an Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Addition

Für zwei komplexe Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Addition und Subtraktion sind in Polardarstellung nicht ohne Weiteres möglich. Es ist vorher eine Umrechnung in die kartesische Form und ggf. danach eine Rückrechnung in die Polarform empfehlenswert. Für Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  erhält man

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

mit

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  unter Nutzung der arctan2-Funktion.
Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
Die Multiplikation zweier komplexer Zahlen entspricht dem Multiplizieren der Beträge Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und dem Addieren der Argumente (Winkel) Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Multiplikation

Für zwei komplexen Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  folgt durch direktes Ausmultiplizieren

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ,

wobei im letzten Schritt Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  zu beachten ist.

Für die Multiplikation zweier komplexer Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  in Polarform gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Division

Für die Division einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  durch eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  erweitert man den Bruch mit der zum Nenner Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  konjugiert komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Der Nenner wird dadurch reell (und ist das Quadrat des Betrages von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ) und die Division lässt sich auf den vorherigen Fall zurückführen:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Alternativ gilt entsprechend zur Multiplikation bei Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Rechenbeispiele

Addition:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Subtraktion:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Multiplikation:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Division:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Potenzen, Wurzeln und Logarithmen

Zu den Rechenoperationen der dritten Stufe gehören Potenzieren, Wurzelziehen (Radizieren) und Logarithmieren.

Logarithmen

Der komplexe natürliche Logarithmus ist (anders als der reelle auf Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ) nicht eindeutig. Durch Hinzufügen von Bedingungen kann allerdings wieder eine Eindeutigkeit erreicht werden. Man spricht dann vom sog. Hauptzweig des Logarithmus. Eine Eigenschaft dieses Hauptzweiges ist, dass seine Einschränkung auf Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wieder dem reellen natürlichen Logarithmus entspricht.

Eine komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  heißt Logarithmus der komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , wenn

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist auch jede Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit beliebigem Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ein Logarithmus von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Man arbeitet daher mit Hauptwerten, d. h. mit Werten eines bestimmten Streifens der komplexen Ebene.

Der Hauptwert des natürlichen Logarithmus der komplexen Zahl

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

ist

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Anders formuliert: Der Hauptwert des natürlichen Logarithmus der komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

wobei Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der Hauptwert des Arguments von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist.

Für allgemeine Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ,

wobei

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Insbesondere ist die aus der reellen Analysis bekannte Regel Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  für Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  nicht allgemein für den Hauptzweig des Logarithmus gültig.

Potenzen

Natürliche Exponenten

Für natürliche Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  berechnet sich die Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -te Potenz in der polaren Form Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  zu

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

(siehe den Satz von de Moivre) oder für die algebraische Form Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit Hilfe des binomischen Satzes zu

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Zum Beispiel gilt

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

oder

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Anwendung findet diese Formel zudem beim Beweis diverser trigonometrischer Identitäten. So erhält man, durch Vergleiche von Real- und Imaginärteil mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  im Satz von de Moivre, die Ausdrücke

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ,

und

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .
Beliebige komplexe Exponenten

Allgemein kann für Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit komplexen Exponenten Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

definiert werden. Dabei steht Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  für den Hauptzweig des komplexen Logarithmus. Diese Definition ist jedoch willkürlich, denn sie hängt von der Wahl des Zweiges des Logarithmus ab. In oberem Fall spricht man entsprechend vom Hauptwert von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Jede Zahl aus der Menge

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

kann allerdings als eine Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -te Potenz von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  aufgefasst werden, und die Wahl des Logarithmus wird bei der entsprechenden Definition der Größe Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit genannt. Im Fall Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  stimmen jedoch alle möglichen Ergebnisse mit dem Hauptwert überein, und die Funktion Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wird eindeutig, d. h. unabhängig von der getroffenen Logarithmuswahl.

Ein Beispiel dieser allgemeinen Regel ist das Potenzieren imaginärer Zahlen mit komplexen Exponenten. So ist der Hauptwert von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wegen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  durch

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

gegeben. Zum Beispiel gilt dann Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Allgemein sind alle möglichen Werte des Terms Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  durch die Elemente der Menge Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  gegeben.

Beim Rechnen mit beliebigen komplexen Potenzen ist, wegen der vielen verschiedenen Zweige des Logarithmus, große Vorsicht geboten. So ist etwa das aus den reellen Zahlen bekannte Potenzgesetz

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

im komplexen im Allgemeinen nicht mehr gültig. Zum Beispiel gilt bei Benutzung des Hauptzweigs

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Untergruppen

Genau die Zahlen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bilden den Einheitskreis der komplexen Zahlen mit dem Betrag Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , diese Zahlen werden auch unimodular genannt und bilden die Kreisgruppe.

Dass die Multiplikation von komplexen Zahlen (außer der Null) Drehstreckungen entspricht, lässt sich mathematisch wie folgt ausdrücken: Die multiplikative Gruppe Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der komplexen Zahlen ohne die Null lässt sich als direktes Produkt der Gruppe der Drehungen – isomorph zur Kreisgruppe – und der Streckungen um einen Faktor ungleich Null – isomorph zur multiplikativen Gruppe Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  – auffassen. Erstere Gruppe lässt sich durch das Argument Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  parametrisieren, zweitere entspricht gerade den Beträgen.

Alle Elemente einer endlichen Untergruppe der multiplikativen Einheitengruppe Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  sind Einheitswurzeln. Unter allen Ordnungen von Elementen einer gegebenen endlichen Untergruppe gibt es eine maximale, sie heiße Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Da Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  kommutativ ist, erzeugt ein Element mit dieser maximalen Ordnung dann auch die Gruppe, so dass die Gruppe zyklisch ist und genau aus den Elementen

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

besteht. Alle diese Elemente liegen auf dem Einheitskreis.

Die Vereinigung aller endlichen Untergruppen ist eine Gruppe, die zur Torsionsgruppe Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  isomorph ist. Sie liegt dicht in ihrer Vervollständigung, der schon erwähnten Kreisgruppe, die auch als 1-Sphäre aufgefasst werden kann und zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  isomorph ist.

Konstruktion

In diesem Abschnitt wird nachgewiesen, dass tatsächlich ein Körper Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der komplexen Zahlen existiert, der den in der obigen Definition geforderten Eigenschaften genügt. Es sind dabei verschiedene Konstruktionen möglich, die jedoch bis auf Isomorphie zum selben Körper führen.

Paare reeller Zahlen

Die Konstruktion nimmt zunächst keinerlei Bezug auf die imaginäre Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln : Im 2-dimensionalen reellen Vektorraum Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  der geordneten reellen Zahlenpaare Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wird neben der Addition

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

(das ist die gewöhnliche Vektoraddition) eine Multiplikation durch

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

definiert.

Nach dieser Festlegung schreibt man Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wird zu einem Körper, dem Körper der komplexen Zahlen. Die imaginäre Einheit wird dann durch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  definiert.

Da Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  eine Basis des Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bilden, lässt sich Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  damit als Linearkombination

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

darstellen.

Erste Eigenschaften

  • Die Abbildung Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist eine Körpereinbettung von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  in Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , aufgrund der wir die reelle Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit der komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  identifizieren.

Bezüglich der Addition ist:

  • die Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  das neutrale Element (das Nullelement) in Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und
  • die Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  das inverse Element in Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Bezüglich der Multiplikation ist:

  • die Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  das neutrale Element (das Einselement) von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und
  • das Inverse (Reziproke) zu Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln .

Bezug zur Darstellung in der Form a + bi

Durch Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  wird die imaginäre Einheit festgelegt; für diese gilt Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , was nach obiger Einbettung gleich Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  entspricht.

Jede komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  besitzt die eindeutige Darstellung der Form

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln ; dies ist die übliche Schreibweise für die komplexen Zahlen.

Polynome: Adjunktion

Eine weitere Konstruktion der komplexen Zahlen ist der Faktorring

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

des Polynomringes in einer Unbestimmten über den reellen Zahlen. Hintergrund ist der surjektive Einsetzungshomomorphismus Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  mit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln , der als Kern das maximale Ideal Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  hat. Mit dem Homomorphiesatz ergibt sich dann die behauptete Isomorphie.

Dieses Konstruktionsprinzip ist auch in anderem Kontext anwendbar, man spricht von Adjunktion.

Matrizen

Die Menge der Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Matrizen der Form

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln   mit  Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

bildet ebenfalls ein Modell der komplexen Zahlen. Dabei werden die reelle Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bzw. die imaginäre Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  durch die Einheitsmatrix Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  bzw. die Matrix Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  dargestellt. Daher gilt:

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Diese Menge ist ein Unterraum des Vektorraums der reellen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln -Matrizen. Diese Darstellung spielt eine entscheidende Rolle bei Holomorphen Funktion im Zusammenhang der Cauchy-Riemannschen partiellen Differentialgleichungen.

Reelle Zahlen entsprechen Diagonalmatrizen Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Die zu den Matrizen gehörenden linearen Abbildungen sind, sofern Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  nicht beide null sind, Drehstreckungen im Raum Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Es handelt sich um genau dieselben Drehstreckungen wie bei der Interpretation der Multiplikation mit einer komplexen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  in der gaußschen Zahlenebene.

Geschichte

Der Begriff „komplexe Zahlen“ wurde von Carl Friedrich Gauß (Theoria residuorum biquadraticorum, 1831) eingeführt, der Ursprung der Theorie der komplexen Zahlen geht auf die Mathematiker Gerolamo Cardano (Ars magna, Nürnberg 1545) und Rafael Bombelli (L’Algebra, Bologna 1572; wahrscheinlich zwischen 1557 und 1560 geschrieben) zurück.

Die Unmöglichkeit eines naiven Radizierens der Art Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  ist bei der Behandlung quadratischer Gleichungen schon sehr früh bemerkt und hervorgehoben worden, z. B. schon in der um 820 n. Chr. verfassten Algebra des Muhammed ibn Mûsâ Alchwârizmî. Aber bei dem nächstliegenden und unanfechtbaren Schluss, dass diese Art von Gleichung nicht lösbar sei, blieb die mathematische Forschung nicht stehen.

In gewissem Sinne ist bereits Gerolamo Cardano (1501–1576) in seinem 1545 erschienenen Buch Artis magnae sive de regulis algebraicis liber unus darüber hinausgegangen. Er behandelt dort die Aufgabe, zwei Zahlen zu finden, deren Produkt 40 und deren Summe 10 ist. Er hebt hervor, dass die dafür anzusetzende Gleichung

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

keine Lösung hat, fügt aber einige Bemerkungen hinzu, indem er in die Lösung

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

der allgemeinen normierten quadratischen Gleichung

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

für Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  die Werte −10 bzw. 40 einsetzt. Wenn es also möglich wäre, dem sich ergebenden Ausdruck

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

einen Sinn zu geben, und zwar so, dass man mit diesem Zeichen nach denselben Regeln rechnen dürfte wie mit einer reellen Zahl, so würden die Ausdrücke

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 
    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

in der Tat je eine Lösung darstellen.

Für die Quadratwurzel aus negativen Zahlen und allgemeiner für alle aus einer beliebigen reellen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und einer positiven reellen Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  zusammengesetzten Zahlen

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln   oder  Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

hat sich seit der Mitte des 17. Jahrhunderts die Bezeichnung imaginäre Zahl eingebürgert, die ursprünglich von René Descartes stammt, der in seiner La Géométrie (1637) damit die Schwierigkeit des Verständnisses komplexer Zahlen als nichtreeller Lösungen algebraischer Gleichungen ausdrückte. John Wallis erzielte im 17. Jahrhundert erste Fortschritte in Hinblick auf eine geometrische Interpretation komplexer Zahlen. Gottfried Wilhelm Leibniz nannte sie 1702 eine „feine und wunderbare Zuflucht des menschlichen Geistes, beinahe ein Zwitterwesen zwischen Sein und Nichtsein“. Die Einführung der imaginären Einheit Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als neue Zahl wird Leonhard Euler zugeschrieben. Er erzielte durch Rechnen mit imaginären Zahlen wertvolle neue Erkenntnisse, zum Beispiel veröffentlichte er die Eulersche Formel 1748 in seiner Einführung in die Analysis und veröffentlichte erstmals explizit die Formel von Abraham de Moivre (Ende des 17. Jahrhunderts, dieser wiederum hatte sie von Isaac Newton), aber auch Euler hatte noch große Schwierigkeiten beim Verständnis und der Einordnung komplexer Zahlen, obwohl er routinemäßig damit rechnete.

Die geometrische Interpretation wurde zuerst vom Landvermesser Caspar Wessel (1799 veröffentlicht in den Abhandlungen der Königlich Dänischen Akademie der Wissenschaften, aber erst rund hundert Jahre später weiteren Kreisen bekannt), von Jean-Robert Argand (in einem obskuren Privatdruck 1806, den aber Legendre zur Kenntnis kam und der 1813 breiteren Kreisen bekannt wurde) und Gauß (unveröffentlicht) entdeckt. Gauß erwähnt die Darstellung explizit in einem Brief an Friedrich Bessel vom 18. Dezember 1811. Nach Argand wird die geometrische Darstellung in der Zahlenebene manchmal auch Arganddiagramm genannt.

Als Begründer der komplexen Analysis gilt Augustin-Louis Cauchy in einer 1814 bei der französischen Akademie eingereichten Arbeit über Integration im Komplexen, die aber erst 1825 veröffentlicht wurde. 1821 definierte er in seinem Lehrbuch Cours d’analyse eine Funktion einer komplexen Variablen in die komplexe Zahlenebene und bewies viele grundlegende Sätze der Funktionentheorie.

Ausgehend von philosophischen Ideen Immanuel Kants fand William Rowan Hamilton 1833 eine logisch einwandfreie Begründung der komplexen Zahlen als geordnetes Paar reeller Zahlen. Er deutete die komplexe Zahl Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  als Zahlenpaar Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  und definierte Addition beziehungsweise die Multiplikation durch

    Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln 

Heute machen diese Dinge keinerlei begriffliche oder tatsächliche Schwierigkeiten. Durch die Einfachheit der Definition, der bereits erläuterten Bedeutung und Anwendungen in vielen Wissenschaftsgebieten stehen die komplexen Zahlen den reellen Zahlen in nichts nach. Der Begriff der „imaginären“ Zahlen, im Sinne von eingebildeten bzw. unwirklichen Zahlen, hat sich also im Laufe der Jahrhunderte zu einer schiefen, aber beibehaltenen Bezeichnung entwickelt.

Bedeutung

Komplexe Zahlen in der Physik

Komplexe Zahlen spielen in der Grundlagenphysik eine zentrale Rolle. In der Quantenmechanik wird der Zustand eines physikalischen Systems als Element eines (projektiven) Hilbertraums über den komplexen Zahlen aufgefasst. Komplexe Zahlen finden Verwendung bei der Definition von Differentialoperatoren in der Schrödingergleichung und der Klein-Gordon-Gleichung. Für die Dirac-Gleichung benötigt man eine Zahlbereichserweiterung der komplexen Zahlen, die Quaternionen. Alternativ ist eine Formulierung mit Pauli-Matrizen möglich, die aber die gleiche algebraische Struktur wie die Quaternionen aufweisen.

Komplexe Zahlen haben in der Physik und Technik eine wichtige Rolle als Rechenhilfe. So lässt sich insbesondere die Behandlung von Differentialgleichungen zu Schwingungsvorgängen vereinfachen, da sich damit die komplizierten Beziehungen in Zusammenhang mit Produkten von Sinus- bzw. Kosinusfunktionen durch Produkte von Exponentialfunktionen ersetzen lassen, wobei lediglich die Exponenten addiert werden müssen. So fügt man dazu beispielsweise in der komplexen Wechselstromrechnung geeignete Imaginärteile in die reellen Ausgangsgleichungen ein, die man bei der Auswertung der Rechenergebnisse dann wieder ignoriert. Dadurch werden in der Zwischenrechnung harmonische Schwingungen (reell) zu Kreisbewegungen in der komplexen Ebene ergänzt, die mehr Symmetrie aufweisen und deswegen einfacher zu behandeln sind.

In der Optik werden die brechenden und absorbierenden Effekte einer Substanz in einer komplexen, wellenlängenabhängigen Permittivität (Dielektrizitätskonstante) oder dem komplexen Brechungsindex zusammengefasst, die wiederum auf die elektrische Suszeptibilität zurückgeführt wird.

In der Fluiddynamik werden komplexe Zahlen eingesetzt, um ebene Potentialströmungen zu erklären und zu verstehen. Jede beliebige komplexe Funktion eines komplexen Arguments stellt immer eine ebene Potentialströmung dar – der geometrische Ort entspricht dem komplexen Argument in der gaußschen Zahlenebene, das Strömungspotenzial dem Realteil der Funktion, und die Stromlinien den Isolinien des Imaginärteils der Funktion mit umgekehrtem Vorzeichen. Das Vektorfeld der Strömungsgeschwindigkeit entspricht der konjugiert komplexen ersten Ableitung der Funktion. Durch das Experimentieren mit verschiedenen Überlagerungen von Parallelströmung, Quellen, Senken, Dipolen und Wirbeln kann man die Umströmung unterschiedlicher Konturen darstellen. Verzerren lassen sich diese Strömungsbilder durch konforme Abbildung – das komplexe Argument wird durch eine Funktion des komplexen Arguments ersetzt. Beispielsweise lässt sich die Umströmung eines Kreiszylinders (Parallelströmung + Dipol) in die Umströmung eines tragflügel-ähnlichen Profils (Joukowski-Profil) verzerren und die Rolle des tragenden Wirbels an einer Flugzeug-Tragfläche studieren. So nützlich diese Methode zum Lernen und Verstehen ist, zur genauen Berechnung reicht sie im Allgemeinen nicht aus.

Komplexe Zahlen in der Elektrotechnik

In der Elektrotechnik besitzt die Darstellung elektrischer Größen mit Hilfe komplexer Zahlen weite Verbreitung. Sie wird bei der Berechnung von zeitlich sinusförmig veränderlichen Größen wie elektrischen und magnetischen Feldern verwendet. Bei der Darstellung einer sinusförmigen Wechselspannung als komplexe Größe und entsprechenden Darstellungen für Widerstände, Kondensatoren und Spulen vereinfachen sich die Berechnungen des elektrischen Stromes, der Wirk- und der Blindleistung in einer Schaltung. Die durch Differentialquotienten oder Integrale gegebene Verkopplung geht über in eine Verkopplung durch trigonometrische Funktionen; die Berechnung der Zusammenhänge lässt sich damit wesentlich erleichtern. Auch das Zusammenwirken mehrerer verschiedener sinusförmiger Spannungen und Ströme, die zu unterschiedlichen Zeitpunkten ihre Nulldurchgänge haben können, lässt sich in komplexer Rechnung leicht darstellen. Genaueres über dieses Thema steht im Artikel über die komplexe Wechselstromrechnung.

In den letzten Jahren hat die digitale Signalverarbeitung außerordentlich an Bedeutung gewonnen, deren Fundament die Rechnung mit komplexen Zahlen bildet.

Körpertheorie und algebraische Geometrie

Der Körper der komplexen Zahlen ist der algebraische Abschluss des Körpers der reellen Zahlen.

Je zwei algebraisch abgeschlossene Körper mit derselben Charakteristik und demselben Transzendenzgrad über ihrem Primkörper (der durch die Charakteristik festgelegt ist) sind (ringtheoretisch) isomorph. Bei einem Körper von Charakteristik 0 mit überabzählbarem Transzendenzgrad ist dieser gleich der Kardinalität des Körpers. Körpertheoretisch bilden die komplexen Zahlen also den einzigen algebraisch abgeschlossenen Körper mit Charakteristik 0 und der Kardinalität Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  des Kontinuums. Eine Konstruktion des Körpers der komplexen Zahlen ist mithilfe dieser Feststellung auch rein algebraisch etwa als Erweiterung des algebraischen Abschlusses der rationalen Zahlen um Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  viele transzendente Elemente möglich. Eine weitere Konstruktion liefert ein Ultraprodukt: Hierzu bilde man zu jedem endlichen Körper seinen algebraischen Abschluss und bilde von ihnen das Ultraprodukt bezüglich eines beliebigen freien Ultrafilters. Aus dem Satz von Łoś folgt, dass dieses Ultraprodukt ein algebraisch abgeschlossener Körper mit Charakteristik 0 ist, die Kardinalität des Kontinuums folgt aus mengentheoretischen Überlegungen.

Unter dem Schlagwort Lefschetz-Prinzip werden verschiedene Sätze zusammengefasst, die es erlauben, Ergebnisse der algebraischen Geometrie, die über den komplexen Zahlen bewiesen werden, auf andere algebraisch abgeschlossene Körper mit Charakteristik 0 zu übertragen (was maßgeblich auf der Vollständigkeit der Theorie der algebraisch abgeschlossenen Körper mit Charakteristik 0 aufbaut). Die Betrachtung des komplexen Falls bietet den Vorteil, dass dort topologische und analytische Methoden eingesetzt werden können, um algebraische Ergebnisse zu erhalten. Obige Ultraproduktkonstruktion erlaubt die Übertragung von Ergebnissen im Fall einer Charakteristik ungleich 0 auf die komplexen Zahlen.

Spektraltheorie und Funktionalanalysis

Viele Ergebnisse der Spektraltheorie gelten für komplexe Vektorräume in größerem Umfang als für reelle. So treten z. B. komplexe Zahlen als Eigenwerte reeller Matrizen auf (dann jeweils zusammen mit dem konjugiert-komplexen Eigenwert). Das erklärt sich dadurch, dass das charakteristische Polynom der Matrix aufgrund der algebraischen Abgeschlossenheit von Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln  über den komplexen Zahlen stets in Linearfaktoren zerfällt. Dagegen gibt es reelle Matrizen ohne reelle Eigenwerte, während das Spektrum eines beliebigen beschränkten Operators auf einem komplexen (mindestens eindimensionalen) Banachraum nie leer ist. In der Spektraltheorie auf Hilberträumen lassen sich Sätze, die im reellen Fall nur für selbstadjungierte Operatoren gelten, im komplexen Fall oft auf normale Operatoren übertragen.

Auch in weiteren Teilen der Funktionalanalysis spielen die komplexen Zahlen eine besondere Rolle. So wird etwa die Theorie der C*-Algebren meist im Komplexen betrieben, die harmonische Analyse befasst sich mit Darstellungen von Gruppen auf komplexen Hilberträumen.

Funktionentheorie und komplexe Geometrie

Das Studium differenzierbarer Funktionen auf Teilmengen der komplexen Zahlen ist Gegenstand der Funktionentheorie. Sie ist in vieler Hinsicht starrer als die reelle Analysis und lässt weniger Pathologien zu. Beispiele sind die Aussage, dass jede in einem Gebiet differenzierbare Funktion bereits beliebig oft differenzierbar ist, oder der Identitätssatz für holomorphe Funktionen.

Die Funktionentheorie ermöglicht oft auch Rückschlüsse auf rein reelle Aussagen, beispielsweise lassen sich manche Integrale mit dem Residuensatz berechnen. Ein wichtiges Einsatzgebiet dieser Methoden ist die analytische Zahlentheorie, die Aussagen über ganze Zahlen auf Aussagen über komplexe Funktionen zurückführt, häufig in der Form von Dirichletreihen. Ein prominentes Beispiel ist die Verbindung zwischen Primzahlsatz und riemannscher ζ-Funktion. In diesem Zusammenhang spielt die riemannsche Vermutung eine zentrale Rolle.

Die oben erwähnte Starrheit holomorpher Funktionen tritt noch stärker bei globalen Fragen in Erscheinung, d. h. beim Studium komplexer Mannigfaltigkeiten. So gibt es auf einer kompakten komplexen Mannigfaltigkeit keine nichtkonstanten globalen holomorphen Funktionen; Aussagen wie der Einbettungssatz von Whitney sind im Komplexen also falsch. Diese sogenannte „analytische Geometrie“ (nicht mit der klassischen analytischen Geometrie von René Descartes zu verwechseln!) ist auch eng mit der algebraischen Geometrie verknüpft, viele Ergebnisse lassen sich übertragen. Die komplexen Zahlen sind auch in einem geeigneten Sinne ausreichend groß, um die Komplexität algebraischer Varietäten über beliebigen Körpern der Charakteristik 0 zu erfassen (Lefschetz-Prinzip).

Verwandte Themen

Anmerkungen

Literatur

  • Paul Nahin: An imaginary tale: The story of Komplexe Zahl: Definition, Grundlegende Eigenschaften, Rechenregeln . Princeton University Press, 1998, ISBN 978-0-691-14600-3.
  • Reinhold Remmert: Komplexe Zahlen. In D. Ebbinghaus u. a. (Hrsg.): Zahlen. Springer, 1983.
Commons: Komplexe Zahlen – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: komplexe Zahl – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Wikibooks: Imaginäre und komplexe Zahlen – eine kompakte Einführung
Wikibooks: Komplexe Zahlen – Lern- und Lehrmaterialien

Einzelnachweise

Tags:

Komplexe Zahl DefinitionKomplexe Zahl Grundlegende EigenschaftenKomplexe Zahl RechenregelnKomplexe Zahl UntergruppenKomplexe Zahl KonstruktionKomplexe Zahl GeschichteKomplexe Zahl BedeutungKomplexe Zahl Verwandte ThemenKomplexe Zahl AnmerkungenKomplexe Zahl LiteraturKomplexe Zahl WeblinksKomplexe Zahl EinzelnachweiseKomplexe ZahlAlgebraische GleichungGanze ZahlRationale ZahlReelle ZahlZahlengerade

🔥 Trending searches on Wiki Deutsch:

Taj Mahal2024Johnny DeppWalther PPKGiorgia MeloniAnke EngelkeTerry ReintkeBDSMBillie EilishThe Walking Dead (Fernsehserie)Nichtbinäre GeschlechtsidentitätKyle MacLachlanNachtigallStellantisAlternative für DeutschlandHeidi KlumThe BeatlesVolker HeißmannVolkswagenWestsaharaVerwandtschaftsbeziehungWikipediaXHamsterMartin Luther KingTim BendzkoElyas M’BarekSYNGAP-SyndromRipley (Fernsehserie)SingapurRocky III – Das Auge des TigersYellowstone (Fernsehserie)Deutsche Demokratische RepublikJens SpahnLändervorwahlliste sortiert nach NummernSing meinen Song – Das TauschkonzertFußball-Europameisterschaft 2024WeissenseeJeffrey DahmerMuttertagLand (Deutschland)BelarusWerner CatelDunePe WernerListe der Großstädte in DeutschlandShōgun (2024)GhulHessenBillerbeckHelene FischerRainer GrenkowitzKünstliche IntelligenzRussischer Überfall auf die Ukraine seit 2022Cornelia PolettoErnst II. (Sachsen-Coburg und Gotha)Liste der IPA-ZeichenTill ReinersVaginalverkehrVagina des MenschenFiliz TasdanSchleswig-HolsteinSheinSamuel KummerFiguren der Dune-ZyklenMIM-104 PatriotBerlinHelmut KutinPenisSlowenienSerbienChronologie des russischen Überfalls auf die UkraineLars EidingerOrder of the British EmpireIranVereinigtes KönigreichPolenArmin LaschetRosalie Thomass🡆 More