സൂപ്പർനോവ

ചില ഭീമൻ നക്ഷത്രങ്ങൾ അവയുടെ പരിണാമത്തിന്റെ അന്ത്യഘട്ടത്തിൽ അത്യധികം പ്രകാശമാനത്തോടെ പൊട്ടിത്തെറിക്കുന്നു.

അത്യന്തം തീവ്രപ്രകാശമുള്ള ഖഗോള വസ്തുവിനു കാരണമാകുന്ന ഈ നക്ഷത്രസ്ഫോടനമാണ് സൂപ്പർനോവ അഥവാ അധിനവതാര. വർദ്ധിതപ്രകാശത്തോടെ കുറച്ചു കാലത്തേക്കുമാത്രം ആകാശത്ത് മിന്നിത്തിളങ്ങിയശേഷം മങ്ങി പൊലിഞ്ഞുപോകുന്ന നോവകളുടെ (നവതാര) വർഗത്തിൽപെട്ടതും എന്നാൽ അവയേക്കാൾ അനേകശതം മടങ്ങ് പ്രകാശമേറിയതും ബൃഹത്തുമായ ഒരുതരം നക്ഷത്രപ്രതിഭാസമാണിത്.മിക്കവാറുമെല്ലാ ഭീമൻ നക്ഷത്രങ്ങളും സൂപ്പർനോവ എന്ന അവസ്ഥയിലൂടെയാണു പരിണമിക്കുന്നത്. സാധാരണ ഗതിയിൽ, സൂര്യന്റെ 8 ഇരട്ടിയിൽ കൂടുതൽ പിണ്ഡമുള്ള നക്ഷത്രങ്ങളാണ് സൂപ്പർനോവ ഘട്ടത്തിലൂടെ കടന്നു പോകുന്നത്.

സൂപ്പർനോവ
സൂപ്പർനോവ പൊട്ടിത്തെറിക്കുന്നതിന്റെ ഒരു ജിഫ് ചിത്രം
സൂപ്പർനോവ
ചന്ദ്ര എക്സ്റേ ടെലിസ്കോപ്പ് എടുത്ത കെപ്ലറുടെ സൂപ്പർനോവയുടെ അവശിഷ്ടത്തിന്റെ (SN 1604) ഫാൾസ് കളർ ചിത്രം.

സൂപ്പർനോവ സ്ഫോടനമുണ്ടാക്കുന്ന പ്രകാശത്തിന്റെ തീവ്രത നിരവധി ആഴ്ചകളോളം (ചിലപ്പോൾ മാസങ്ങളോളം) പ്രസ്തുത നക്ഷത്രം ഉൾക്കൊള്ളുന്ന താരാപഥത്തിന്റെ പ്രകാശ തീവ്രതയെപോലും വെല്ലുന്നു. ഈ കുറഞ്ഞ സമയം കൊണ്ട് പ്രസ്തുത സൂപ്പർനോവ, സൂര്യൻ 100 കോടി വർഷം കൊണ്ട് പുറത്തു വിടുന്ന ഊർജ്ജത്തിനു സമാനമായ ഊർജ്ജം പുറത്തു വിടുന്നു. സൂപ്പർനോവ സ്ഫോടനത്തിനു കാരണമാകുന്ന നക്ഷത്രത്തിന്റെ 96 ശതമാനത്തോളം പദാർത്ഥം ഉഗ്രസ്ഫോടനത്തിലൂടെ നഷ്ടമാകുന്നുവെന്ന് പഠനങ്ങൾ സൂചിപ്പിക്കുന്നു.

സൂപ്പർനോവ സ്ഫോടനം നടന്ന സ്ഥലത്തുനിന്നു പ്രകാശം ഭൂമിയിലെത്തുന്നതു വളരെയധികം ദൂരം സഞ്ചരിച്ചശേഷമാണ്. സ്ഫോടനം നടന്ന സ്ഥലത്തേക്കുള്ള ദൂരം അനുസരിച്ച് അതിന് അനേക വർഷങ്ങൾ വേണ്ടി വന്നേക്കാം. അതിനാൽ ഭൂമിയിൽ സൂപ്പർനോവസ്ഫോടനം ആദ്യമായി കാണപ്പെടുമ്പോൾ, യഥാർത്ഥത്തിൽ സ്ഫോടനം നടന്ന് വർഷങ്ങൾ കഴിഞ്ഞിരിക്കാം. എങ്കിലും ഭൂമിയിൽ പ്രസ്തുത സ്ഫോടനം എപ്പോൾ കാണുന്നു എന്നതിനെ അടിസ്ഥാനമാക്കിയാണ് സൂപ്പർനോവയ്ക്ക് പേരിടുന്നത്. പുരാതന കാലങ്ങളിൽ ഇത്തരം സൂപ്പർനോവകൾ ഏതോ ഗ്രഹത്തിൽ പുതിയ രാജാവിന്റെ പിറവി അല്ലെങ്കിൽ കിരീട ധാരണം തുടങ്ങിയ സംഭവങ്ങൾ മൂലമാണെന്നു കരുതപ്പെട്ടിരുന്നു.

ആകാശഗംഗയുടെ വലിപ്പമുള്ള ഒരു താരാപഥത്തിൽ അമ്പതു വർഷത്തിലൊരിക്കൽ ശരാശരി ഒരു സൂപ്പർനോവ സ്ഫോടനം നടക്കുമെന്നാണു ശാസ്ത്രജ്ഞന്മാർ കണക്കാക്കിയിരിക്കുന്നത്. നക്ഷത്രാന്തരീയമാദ്ധ്യമത്തിൽ ഘനമൂലകങ്ങൾ വിതറുന്നതിൽ പ്രധാന പങ്കുവഹിക്കുന്നത് സൂപ്പർനോവസ്ഫോടനമാണ്‌. അതോടൊപ്പം സ്ഫോടനമുണ്ടാകുമ്പോൾ വികസിക്കുന്ന ആഘാത തരംഗങ്ങൾ (shock waves) പുതു നക്ഷത്രങ്ങളുടെ പിറവിക്കും കാരണമാകുന്നു.

പേരിനു പിന്നിൽ

ലത്തീൻ ഭാഷയിൽ നോവ എന്നാൽ പുതിയത് എന്നാണ് അർത്ഥം. ജ്യോതിശാസ്ത്രത്തിൽ നോവ എന്നത് ഖഗോളത്തിൽ പുതുതായി കാണപ്പെട്ട നക്ഷത്രത്തെയാണ് സൂചിപ്പിക്കുന്നത്. വ്യത്യസ്തമായ ജ്യോതിശാസ്ത്രപ്രതിഭാസം വഴി പ്രകാശം വർദ്ധിക്കുന്ന സാധാരണ നോവകളിൽ നിന്ന് വേർതിരിക്കാനാണ്‌ ഒരു വയസ്സൻ നക്ഷത്രം അതിന്റെ അവസാനഘട്ടത്തിൽ ഉഗ്രസ്ഫോടനത്തിന് കാരണമാവുന്നതിനെ സൂപ്പർ എന്ന് വിശേഷണം ചേർത്ത് സൂചിപ്പിക്കുന്നത്. സൂപ്പർനോവകൾക്ക് സാധാരണ നോവകളെക്കാൾ പ്രകാശതീവ്രത കൂടുതലാണ്‌.

നിരീക്ഷണ ചരിത്രം

സൂപ്പർനോവ 
SN 1054 എന്ന സൂപ്പർനോവയുടെ അവശിഷ്ടമായ ക്രാബ് നെബുലയുടെ ഹബിൾ ദൂരദർശിനി ചിത്രം.

ചീനക്കാരായ ജ്യോതിശാസ്ത്രജ്ഞർ നാൻ‌മെൻ അസ്റ്റെറിസത്തിൽ (Nanmen asterism) (ആധുനിക നക്ഷത്ര രാശിയായ മഹിഷാസുരൻ രാശിയുടെ ഭാഗമാണ് ഇത്) ഒരു പുതിയ നക്ഷത്രത്തെ കണ്ടതായി രേഖപ്പെടുത്തിയിരിക്കുന്നു. ക്രി.വ. 185-ൽ ആണ് ഈ രേഖപ്പെടുത്തൽ നടന്നത് . മാസങ്ങളോളം തെളിഞ്ഞു കാണപ്പെട്ട ഇതായിരിക്കണം ചരിത്രത്തിൽ രേഖപ്പെടുത്തപ്പെട്ട ആദ്യത്തെ സൂപ്പർനോവ നിരീക്ഷണം എന്ന് ഇന്ന് കരുതുന്നു. 21ആം നൂറ്റാണ്ടിലെ XMM-ന്യൂട്ടൺ, ചാന്ദ്ര എക്സ്-റേ ടെലിസ്കോപ്പ് എന്നീ ഉപഗ്രഹ ദൂരദർശിനികളിലെ എക്സ്-റേ ടെലസ്കോപ്പ് ഉപയോഗിച്ച് കണ്ടു പിടിച്ച നക്ഷത്രാവശിഷ്ടങ്ങൾ (RCW 86) ക്രി.വ. 185-ൽ കണ്ട സൂപ്പർനോവയുടേതാണ് എന്ന് തെളിവുകൾ സൂചിപ്പിക്കുന്നു. അതിനാൽ SN 185 എന്ന സൂപ്പർനോവ ആണ് മനുഷ്യൻ നിരീക്ഷിച്ചതും ചരിത്രത്തിൽ രേഖപ്പെടുത്തിയിരിക്കുന്നതുമായ ആദ്യത്തെ സൂപ്പർനോവ എന്ന് കരുതാം . ഇന്നത്തെ പഠനങ്ങൾ SN 185 8200 പ്രകാശവർഷം അകലെയാണെന്നും അതിന്റെ പ്രകാശം ക്രി.വ. 185-ൽ ഭൂമിയിൽ എത്തിയിരിക്കാം എന്നും സൂചിപ്പിക്കുന്നു.

ക്രി.വ. 1054 ജൂലൈ 4 ന്‌ ചൈനീസ് ജ്യോതിശാസ്ത്രജ്ഞന്മാർ ഇടവം നക്ഷത്രരാശിയിൽ ഒരു അതിഥി നക്ഷത്രത്തെ കണ്ടതായി കണ്ടതായി ചരിത്രമുണ്ട്. ക്രി.മു. 532 മുതൽ ക്രി.വ. 1064 വരെ വന്ന 75ഓളം അതിഥി നക്ഷത്രങ്ങളെ കുറിച്ച് പ്രസ്താവിക്കുന്ന അഞ്ചോളം രേഖകൾ ചൈനീസ് ജ്യോതിശാസ്ത്രജ്ഞന്മാരുടേതായി ഉണ്ട്. ഈ രേഖകളിൽ പറയുന്ന 1054-ൽ വന്ന അതിഥി നക്ഷത്രം ഒരു സൂപ്പർനോവ ആണെന്ന് ഈ രേഖകൾ ഉദ്ധരിച്ച് സൈമൺ മിട്ടണ് പ്രസ്താവിക്കുന്നു.

1054 ൽ കാണപ്പെട്ട നക്ഷത്രം വളരെ പ്രകാശമാനമായിരുന്നത്രെ. അതിന്റെ ദൃശ്യ കാന്തിമാനം -6 വരെ എത്തിയിരിക്കാം എന്നാണ് അനുമാനം. . മറ്റു ചില രേഖകൾ ഈ നക്ഷത്രം പൂർണ്ണ ചന്ദ്രന്റെ അത്ര പ്രകാശമുണ്ടായിരുന്നതായും 23 ദിവസം പ്രകാശിച്ചതായും പറയുന്നു. ആ സൂപ്പർനോവയുടെ ബാക്കി പത്രമാണ് ഇന്നത്തെ ക്രാബ് നെബുല.

സ്പെക്ട്രൽ വിശദീകരണവും തരങ്ങളും

അധിനവതാര നൂതനമായി രൂപംകൊള്ളുന്ന ഒരു നക്ഷത്രമല്ല; അസാധാരണത്വമൊന്നും പ്രകടിപ്പിക്കാത്ത ഒരു താര പെട്ടെന്ന് ഉജ്ജ്വലിക്കുന്നതാണ്. അന്തർഭാഗത്തു നടക്കുന്ന അവശോഷകമായ താപ-അണുകേന്ദ്രീയ-അഭിക്രിയ (Thermo-nuclear reaction)യുടെ ഫലമായി പെട്ടെന്ന് സങ്കോചിക്കുന്ന (shrinking) താരം സ്ഫോടനം ചെയ്യുന്നതാണ് അധിനവതാരയായി പ്രത്യക്ഷപ്പെടുന്നതെന്ന് അനുമാനിക്കാൻ ന്യായങ്ങളുണ്ട്. അവയുടെ സ്പെക്ട്ര (Spectrum)ത്തെപ്പറ്റിയുള്ള പഠനം അവയിലെ നിഗൂഢരഹസ്യങ്ങളിലേക്ക് വെളിച്ചം വീശുന്നു. ഹൈഡ്രജന്റെ രേഖകളുടെ അഭാവം, അവയിൽ ഹൈഡ്രജൻ കാര്യമായി ഇല്ലെന്ന് തെളിയിക്കുന്നു. സ്പെക്ട്രം പല രൂപാന്തരങ്ങൾ പ്രകടമാക്കുന്നു. ആദ്യം ഇരുണ്ട അവശോഷക രേഖകൾ, പിന്നെ മങ്ങിയ ദീപ്തിരേഖകൾ, അതിനുശേഷം പ്രകാശിക്കുന്ന രേഖകൾ; ഇവ ഒന്നിനുപുറകേ ഒന്നായി പ്രത്യക്ഷപ്പെടുന്നു. അവസാനഘട്ടത്തിൽ സ്പെക്ട്രം നിറയെ നെബുലകളുടേതുപോലെയുള്ള അദൃശ്യദീപ്തിരേഖകളായിരിക്കും. സ്ഫോടനത്തിനുശേഷം അതിശീഘ്രം വികസിക്കുന്ന താരത്തെയാണ്, ഈ വ്യതിയാനങ്ങൾ സൂചിപ്പിക്കുന്നത്.

അധിനവതാരകളെ ഗ്രൂപ്പ് 1, ഗ്രൂപ്പ് 2 എന്നിങ്ങനെ തരംതിരിക്കാം. 1-ം ഗ്രൂപ്പ് പ്രകാശം കൂടുതലുളളവയും അതിശീഘ്രം വികസിക്കുന്നവയുമാണ്. അവയുടെ സ്പെക്ട്രം ഡോപ്ളർ പ്രഭാവം (Doppler effect) മൂലം വിസാരിതവും അവ്യക്തവുമാകുന്നു. 2-ം ഗ്രൂപ്പ് ആദ്യത്തേതിന്റെ പത്തിലൊരംശംപോലും ശോഭയില്ലാത്തവയും സ്പഷ്ടമായ രേഖകൾ പ്രദാനം ചെയ്യുന്നവയും ആകുന്നു. സ്ഫോടനത്തിനുശേഷം അധിനവതാര പൂർവസ്ഥിതിയെ പ്രാപിക്കുന്നില്ല; ആന്തരികവ്യത്യാസങ്ങൾ വന്നിരിക്കും.

ആവൃത്തി

ഞണ്ടുനെബുല

ശരാശരി എടുത്താൽ 359 വർഷത്തിൽ ഒന്നുവീതം ഓരോ ഗാലക്സിയിൽ അധിനവതാര ഉദയം ചെയ്യുന്നതായി കാണാം. ഭൂമി ഉൾപ്പെടുന്ന ഗാലക്സിയിൽതന്നെ മൂന്നെണ്ണം പ്രത്യക്ഷപ്പെട്ടിട്ടുള്ളതായി രേഖകളുണ്ട്: 1054-ൽ ചൈനക്കാരും ജപ്പാൻകാരും രേഖപ്പെടുത്തിയത്; 1572-ൽ ടൈക്കോയും, 1604-ൽ കെപ്ളറും രേഖപ്പെടുത്തിയവ. ഞണ്ടുനെബുല (Crab nebula) 1054-ലെ അധിനവതാരയുടെ അവശിഷ്ടമായി തെളിയിക്കപ്പെട്ടുകഴിഞ്ഞു. ഭൂമിയിൽ നിന്നു 51.4 കിലോ പാർസെക് അകലത്തിലുള്ള ടറന്റുല നെബുലയുടെ പ്രാന്തത്തിൽ വലിയ മെഗലൻ മേഘത്തിൽ (ക്ഷീരപഥത്തിനു സമീപമുള്ള ഒരു ചെറു ഗാലക്സി) ഉണ്ടായ ഒരു അധിനവതാരയുടെ പ്രകാശം 1987 ഫെബ്രുവരി 23-ന് ദൃശ്യമായി. 1987അ എന്ന് വിശേഷിപ്പിക്കപ്പെടുന്ന ഈ അധിനവതാരയാണ് ആധുനിക കാലജ്യോതിശ്ശാസ്ത്രജ്ഞർക്ക് കാണുവാൻ സാധ്യമായ പ്രഥമ അധിനവതാര, എന്നാൽ 51.4 കിലോ പാർസെക് എന്നത് 1,68,000 പ്രകാശവർഷത്തിനു തുല്യമായതിനാൽ ഈ കോസ്മിക് പ്രഭാവം 1,68,000 വർഷം മുൻപാണ് യഥാർഥത്തിൽ സംഭവിച്ചിട്ടുള്ളത്.

ഭീമൻ നക്ഷത്രം സൂപ്പർ നോവ ആകുന്ന പ്രക്രിയ

പ്രമാണം:Rcw86 420.jpg
XMM-ന്യൂട്ടൺ, ചാന്ദ്ര എക്സ്-റേ ടെലിസ്കോപ്പ് എന്നിവ എടുത്ത RCW 86 യുടെ ചിത്രങ്ങൾ സം‌യോജിപ്പിച്ച ഉണ്ടാക്കിയ ഫാൾസ് കളർ ചിത്രം.

ഒരു ഭീമൻ നക്ഷത്രത്തിന്റെ കാമ്പിൽ അണുപ്രക്രിയകൾ മൂലം ഇരുമ്പ് ഉല്പാദിപ്പിക്കപ്പെടുന്നതോടെ കാമ്പിന്റെ എരിയൽ അവസാനിക്കുന്നു. ന്യൂക്ലിയർ ബന്ധനോർജ്ജം (Nuclear Binding energy) ഏറ്റവും കൂടുതൽ ഉള്ള മൂലകം ഇരുമ്പിന്റെ ഗ്രൂപ്പിലുള്ള മൂലകങ്ങൾ ആണ്. (നിക്കൽ ആണ് ഏറ്റവും കൂടുതൽ ന്യൂക്ലിയർ ബന്ധനോർജ്ജം ഉള്ള മൂലകം). അണു സംയോജനം വഴി ഇരുമ്പിനു മുകളിലുള്ള മൂലകങ്ങൾ ഉണ്ടാകുമ്പോൾ ഊർജ്ജം പുറത്തു വിടുകയല്ല മറിച്ച് ഊർജ്ജം ആഗിരണം ചെയ്യുകയാണ്. അതിനാൽ നക്ഷത്രങ്ങളിൽ അണുസം‌യോജനം വഴി ഇരുമ്പിനു മുകളിലുള്ള മൂലകങ്ങൾ ഉല്പാദിപ്പിക്കുവാനും, അതു വഴി ഊർജ്ജം പുറത്തുവിടാനും പറ്റില്ല.

ഊർജ്ജം ഉൽ‌പാദിപ്പിക്കുവാൻ പറ്റാത്ത പ്രക്രിയ നടക്കുമ്പോൾ നക്ഷത്രങ്ങളിൽ ഗുരുത്വാകർഷണം മേൽക്കൈ നേടുന്നു. അതോടെ നക്ഷത്രങ്ങളുടെ താപനില കുറയുകയും അണുസംയോജനം നടക്കാതാവുകയും ചെയ്യും. അതിനാൽ നക്ഷത്രങ്ങളിൽ അണുസം‌യോജനം മൂലം ഇരുമ്പിനു മുകളിൽ ഉള്ള മൂലകങ്ങൾ ഉത്പാദിപ്പിക്കുവാൻ കഴിയുകയില്ല.

കാമ്പ് ഇരുമ്പായി തീർന്ന ഒരു ഭീമൻ നക്ഷത്രത്തിൽ ഊർജ്ജോല്പാദനത്തിനുള്ള ഒരേ ഒരു വഴി സങ്കോചം മൂലം ഉല്പാദിപ്പിക്കപ്പെടുന്ന താപം ആണ്.[അവലംബം ആവശ്യമാണ്] ഇപ്രകാരം സങ്കോചം മൂലം ഉണ്ടാകുന്ന താപം കാമ്പിലെ താപനില 5 X 109 K ആയി ഉയർത്തുന്നു. ഈ താപനില ഉണ്ടാക്കുന്ന ഗാമാ കിരണങ്ങൾ ഇരുമ്പിന്റെ ന്യൂക്ലിയസ്സുമായി കൂട്ടിയിടിച്ച് ഗാമാ കണങ്ങളും മറ്റും ഉണ്ടാക്കുന്നു. ഈ പ്രക്രിയയ്ക്ക് ഫോട്ടോ ഡിസിന്റഗ്രേഷൻ (Photodisintegration) എന്നു പറയുന്നു. അതായത് ഉയർന്ന അണുസംഖ്യയുള്ള മൂലകങ്ങൾ ഉന്നതോർജ്ജ ഫോട്ടോണുകളുമായി കൂട്ടിയിടിച്ച് അടിസ്ഥാനകണികകൾ ആയ പ്രോട്ടോൺ, ന്യൂട്രോൺ, ആൽഫാ കണങ്ങൾ എന്നിവ ഒക്കെ പുറത്ത് വിട്ട് അണുസംഖ്യയുള്ള മൂലകങ്ങൾ ആയി മാറുന്ന പ്രക്രിയ. ഇതു മൂലം നക്ഷത്രത്തിന്റെ കാമ്പ് അതീവ സാന്ദ്രമാവുകയും ഋണ ചാർജ്ജുള്ള ഇലക്‌ട്രോണുകൾ ധന ചാർജ്ജുള്ള പ്രോട്ടോണുകളുമായി ചേർന്ന് ന്യൂട്രൽ ചാർജ്ജുള്ള ന്യൂട്രോണുകൾ ഉണ്ടാകുന്നു.

ഈ പ്രക്രിയയിൽ ന്യൂട്രോണിനോടൊപ്പം ഉണ്ടാകുന്ന ന്യൂട്രിനോ എന്ന കണിക കാമ്പിലെ ഊർജ്ജം പുറത്തേക്ക് കൊണ്ട് പോകുന്നു. ഇതു മൂലം കാമ്പ് തണുക്കുകയും സങ്കോചം വേഗത്തിൽ നടന്ന് കൂടുതൽ ഇലക്‌ട്രോണുകൾ പ്രോട്ടോണുകളുമായി ചേർന്നു കൂടുതൽ ന്യൂട്രോണുകൾ ഉണ്ടാവുന്നു. അങ്ങനെ കാമ്പിലെ ന്യൂട്രോണുകളുടെ എണ്ണം പിന്നേയും വർദ്ധിക്കുന്നു.

സൂപ്പർനോവ 
പരിണാമത്തിന്റെ അന്ത്യഘട്ടത്തിലെത്തിയ ഒരു ഭീമൻ നക്ഷത്രത്തിൽ (a) മൂലകങ്ങളുടെ പാളികളിൽ (ഉള്ളിയുടെ പാളികൾ പോലെ) നടക്കുന്ന അണുസം‌യോജന പ്രക്രിയയിലൂടെ നക്ഷത്രത്തിന്റെ കാമ്പു് ഇരുമ്പായി മാറുന്നു (b) ചന്ദ്രശേഖർ പരിധി എത്തുന്നതോടെ നക്ഷത്രം തകർന്നടിയാൻ തുടങ്ങുന്നു. കാമ്പിന്റെ അകക്കാമ്പ് ന്യൂട്രോണുകളായി വിഘടിക്കുന്നു (c) ഇത് അകത്തേക്കു വീഴുന്ന പിണ്ഡം പുറത്തേക്കു വികസിക്കുവാൻ കാരണമാവുന്നു (d) ഇതിന്റെ ഫലമായി പുറത്തേക്ക് വ്യാപിക്കുന്ന ഷോക്ക് തരംഗം ഉണ്ടാവുന്നു (ചുവപ്പ്). കമ്പനം നിലയ്ക്കുവാൻ ആരംഭിക്കുന്നു (e) പക്ഷേ ന്യൂട്രിനോ പ്രതിപ്രവർത്തനം ഈ കമ്പനത്തെ വീണ്ടും ഉത്തേജിപ്പിക്കുന്നു. ചുറ്റുമുള്ള വസ്തുക്കൾ പൊട്ടിത്തെറിക്കുന്നു. (f) അപഭൃഷ്ടമായ അവശിഷ്ടങ്ങളെ മാത്രം അവശേഷിപ്പിക്കുന്നു.

കാമ്പ് ദൃഢമാകുന്നു

ഈ പ്രക്രിയകൾ മൂലം ഒരു ഘട്ടത്തിൽ കാമ്പിലെ ന്യൂട്രോണിന്റെ സാന്ദ്രത അണുകേന്ദ്രത്തിലെ സാന്ദ്രതയോട് തുല്യമാകുന്നു. ഇങ്ങനെ അണുകേന്ദ്ര സാന്ദ്രതയോട് തുല്യമാകുന്ന ഘട്ടത്തിൽ കാമ്പ് വളരെ പെട്ടെന്ന് ഉറച്ച് ദൃഢമാകുന്നു. അതായത് കാമ്പിനെ സങ്കോചം വളരെ പെട്ടെന്ന് നിലയ്ക്കുന്നു. പെട്ടെന്നുള്ള ഈ പ്രക്രിയ മൂലം കാമ്പിന്റെ പുറത്തുള്ള പാളികളിലേക്ക് അതിശക്തമായ മർദ്ദതരംഗങ്ങൾ പായുന്നു.

മർദ്ദതരംഗങ്ങൾ പുറത്തേക്ക് പായുന്നു

ഈ സന്ധിദ്ധ ഘട്ടത്തിൽ മുൻ‌പു വിവരിച്ച പ്രക്രിയകൾ മൂലമുള്ള കാമ്പിനെ തണുക്കൽ മൂലം കാമ്പിന്റെ ചുറ്റുമുള്ള പാളികളിലെ പദാർത്ഥം പ്രകാശത്തിന്റെ 15% വരെ വേഗത്തിൽ കാമ്പിലേക്ക് അടുക്കും. ഇങ്ങനെ കാമ്പിലേക്ക് അടുക്കുന്ന പദാർത്ഥം, കാമ്പ് ഉറച്ച് ദൃഢമാകുന്നതു മൂലം പുറത്തേക്ക് വരുന്ന അതിശക്തമായ മർദ്ദതരംഗവുമായി കൂട്ടിയിടിക്കുന്നു. തൽഫലമായി ഒരു നിമിഷാർദ്ധത്തിനുള്ളിൽ കാമ്പിലേക്ക് നീങ്ങിക്കൊണ്ടിരുന്ന പദാർത്ഥം, ഈ അതിശക്തമായ മർദ്ദതരംഗം മൂലവും കാമ്പിൽ നിന്നു പുറത്തേക്ക് വരുന്ന ന്യൂട്രിനോകളുടെ അതിശക്തമായ ഊർജ്ജ പ്രവാഹം മൂലവും നേരെ എതിർ ദിശയിൽ പുറത്തേക്ക് പായുന്നു.

നക്ഷത്രം പൊട്ടിത്തെറിക്കുന്നു

പുറത്തേക്ക് പായുന്ന തരംഗം സാന്ദ്രത കുറഞ്ഞ പുറം പാളികളുമായി സന്ധിക്കുന്നതു മൂലം അതിന്റെ വേഗത പിന്നേയും വർദ്ധിക്കുന്നു. കുറച്ച് മണിക്കൂറുകൾക്കുള്ളിൽ ഈ മർദ്ദതരംഗം നക്ഷത്രത്തിന്റെ ഉപരിതലത്തിൽ എത്തുകയും അതിന്റെ പുറം പാളികളെ അത്യുഗ്രമായ ഒരു സ്ഫോടനത്തിൽ പുറത്തേക്ക് ഭിന്നിപ്പിച്ചു കളയുകയും ചെയ്യുന്നു. ഈ അത്യുഗ്ര സ്ഫോടനം ഉണ്ടാക്കുന്ന പ്രക്രിയയിൽ 1046 J ഊർജ്ജം വരെ ഉണ്ടാകുന്നു. ഇപ്രകാരം ഒരു നക്ഷത്രത്തിൽ നടക്കുന്ന അത്യുഗ്ര സ്ഫോടനത്തെയാണ് സൂപ്പർനോവ എന്നു പറയുന്നത്.

സൂപ്പർ കമ്പ്യൂട്ടറുകൾ ഉപയോഗിച്ചു നടത്തിയ പരീക്ഷണത്തിൽ ഒരു 25 M๏ നക്ഷത്രം അതിന്റെ 96% പദാർത്ഥം വരെ സൂപ്പർനോവ സ്ഫോടനത്തിലൂടെ ചുറ്റുമുള്ള നക്ഷത്രാന്തരീയ ഇടത്തേക്ക് തള്ളുന്നു എന്നു പഠനങ്ങൾ തെളിയിക്കുന്നു.

സൂപ്പർനോവയുടെ ബാക്കിപത്രം

സൂപ്പർനോവ സ്ഫോടനം മൂലം ഉണ്ടാകുന്ന അതി ഭീമമായ ഊർജ്ജം ന്യൂക്ലിയർ പ്രക്രിയകളുടെ ഒരു ശ്രേണിക്ക് തന്നെ തിരി കൊളുത്തുന്നു. ഊർജ്ജം ആഗിരണം ചെയ്യുന്നതിനാൽ നക്ഷത്ര കാമ്പിൽ ഉത്പാദിപ്പിക്കുവാൻ കഴിയാത്ത ഇരുമ്പിനു മുകളിലുള്ള മൂലകങ്ങൾ ഉത്പാദിപ്പിക്കുവാൻ വേണ്ട ഊർജ്ജം സൂപ്പർനോവ സ്ഫോടനത്തിൽ നിന്നു ലഭ്യമാകുന്നു. ഇതു മൂലം കാമ്പിന്റെ കത്തൽ കൊണ്ട് ഉൽ‌പാദിപ്പിക്കുവാൻ സാധിക്കാത്ത ഇരുമ്പിനു മുകളിൽ ഉള്ള എല്ലാ മൂലകങ്ങളും സൃഷ്ടിക്കപ്പെടുന്നു.

അതീവ ഊർജ്ജ പൂരിതമായ സൂപ്പർനോവയുടെ മർദ്ദതരംഗങ്ങൾ മാത്രമാണ് ഉയർന്ന മൂലകങ്ങളായ നാകം, ചെമ്പ്, വെളുത്തീയം, സ്വർണ്ണം, രസം, കറുത്തീയം തുടങ്ങിയവ സൃഷ്ടിക്കുന്നതിനുള്ള ഏക മാർഗ്ഗം.ഈ മൂലകങ്ങൾ എല്ലാം ഇന്നു ഭൂമിയിൽ കാണപ്പെടുന്നുണ്ട്. അതിനാൽ തന്നെ സൂര്യൻ കേന്ദ്രമായ സൗരയൂഥത്തിന്റെ സൃഷ്ടിക്ക് ഒരു സൂപ്പർനോവ സ്ഫോടനത്തിന്റെ ആഘാതതരംഗങ്ങൾ കാരണമായിരിക്കാം എന്ന് അനുമാനിക്കുന്നു, ഭൂമിയും നമ്മുടെ ഓരോരുത്തരുടേയും ശരീരം വരേയും മുൻപ് ജീവിച്ച് സൂപ്പർനോവ ആയി മൃതിയടഞ്ഞ ഒരു നക്ഷത്രത്തിന്റെ ഭാഗങ്ങൾ ഉൾക്കൊള്ളുന്നു.

സൂപ്പർനോവയ്ക്കു പേരിടുന്ന വിധം

സൂപ്പർനോവയെ കണ്ടെത്തിയാൽ ആ കണ്ടെത്തലിനെ കുറിച്ചുള്ള വിവരം അന്താരാഷ്ട്ര ജ്യോതിശാസ്ത്ര യൂണിയനു കീഴിലുള്ള സെൻ‌ട്രൽ ബ്യൂറോ ഫോർ അസ്ക്രോണിമിക്കൽ ടെലഗ്രാംസിനു സമർപ്പിക്കപ്പെടുന്നു. അവർ പ്രസ്തുത വിവരങ്ങൾ പരിശോധിച്ച ശേഷം സൂപ്പർനോവയ്ക്കു പേരിട്ടതിനു ശേഷം അതിന്റെ അറിയിപ്പ് പുറത്തു വിടുന്നു.

സെൻ‌ട്രൽ ബ്യൂറോ ഫോർ അസ്ക്രോണിമിക്കൽ ടെലഗ്രാംസ് സൂപ്പർനോവയ്ക്കു പേരിടുന്ന വിധം താഴെ വിവരിക്കുന്നു. സൂപ്പർനോവയ്ക്ക് പേരിടുന്നത് പ്രസ്തുത സൂപ്പർ നോവയെ ഭൂമിയിൽ നമ്മൾ ഏതു വർഷം ആദ്യമായി കണ്ടു എന്നതിനെ അടിസ്ഥാനമാക്കിയാണ്. അല്ലാതെ സ്ഫോടനം എപ്പോൾ നടന്നു എന്നതിനെ ആധാരമാക്കി അല്ല.

ഇപ്പോൾ പേരിടുന്ന വിധം

പേരിന്റെ ഒന്നാം ഭാഗം

ആദ്യമായി സൂപ്പർനോവകൾക്ക് എല്ലാം അതിന്റെ പേരിന്റെ മുന്നിൽ SN എന്നു ചേർക്കും.

പേരിന്റെ രണ്ടാം ഭാഗം

രണ്ടാമതായി സൂപ്പർനോവകൾക്ക് എല്ലാം പേരിന്റെ ഒപ്പം പ്രസ്തുത സൂപ്പർനോവ കണ്ടെത്തിയ വർഷവും ചേർക്കും. 1987-ൽ കണ്ടെത്തിയ സൂപ്പർനോവയ്ക്ക് SN 1987, 2006-ൽ കണ്ടെത്തിയതിനു SN 2006 എന്നിങ്ങനെ.

പേരിന്റെ മൂന്നാം ഭാഗം

ജ്യോതിശാസ്ത്രജ്ഞന്മാർ സൂപ്പർനോവകളെ കുറിച്ചുള്ള നിരന്തര ഗവേഷണത്തിലാണ്. എല്ലാ വർഷവും നൂറുകണക്കിനു പുതിയ സൂപ്പർനോവകളെ നമ്മുടെ താരാപഥമായ ആകാശഗംഗയിലും മറ്റു സമീപതാരാപഥങ്ങളിലും കണ്ടെത്തുന്നു. നമ്മുടെ നിരീക്ഷണ സംവിധാനങ്ങൾ മെച്ചപ്പെടുന്നതു കൊണ്ട് ഓരോ വർഷവും കണ്ടെത്തുന്ന സൂപ്പർനോവകളുടെ എണ്ണവും കൂടിക്കൊണ്ടിരിക്കുകയാണ്.

ഒരു വർഷം ആദ്യമായി കാണുന്ന സൂപ്പർനോവയുടെ പേരിന്റെ ഒപ്പം A എന്നു ചേർത്തു. അപ്പോൾ 2006-ൽ ആദ്യമായി കണ്ടെത്തിയ സൂപ്പർനോവയെ SN 2006A എന്നു വിളിച്ചു. രണ്ടാമതു കണ്ടെത്തിയതിനെ SN 2006B എന്നു വിളിച്ചു. മൂന്നാമതു കണ്ടെത്തിയതിനെ SN 2006C എന്നു വിളിച്ചു അങ്ങനെ.

പക്ഷെ അപ്പോൾ ഒരു പ്രശ്നം ഉണ്ട്. ഒരു വർഷം 26 സൂപ്പർനോവയെ കണ്ടെത്തി അതിനു SN 2006Z എന്നു പേരിട്ടു കഴിഞ്ഞാൽ ഇങ്ങനെ പേരിടാനുള്ള അക്ഷരങ്ങൾ കഴിഞ്ഞു. അപ്പോഴാണ് ജ്യോതിശാസ്ത്രജ്ഞന്മാർ സൂപ്പർനോവകൾക്കു പേരിടാൻ പുതുവഴികൾ തേടിയത്.

SN 2006Z നു ശേഷം കണ്ടെത്തുന്ന സൂപ്പർ നോവയ്ക്ക് (അതായത് ആ വർഷത്തെ 27ആമത്തെ സൂപ്പർനോവയെ) SN 2006aa എന്നു പേർ വിളിച്ചു. 28ആമത്തെ സൂപ്പർനോവയെ SN 2006ab എന്നു വിളിച്ചു.അങ്ങനെ ഈ ശ്രേണി aa,ab, ac........az വരെ. അതു കഴിഞ്ഞാൽ ba,bb,bc...bz വരെ. അങ്ങനെ 182 സൂപ്പർനോവകളെ കണ്ടെത്തിയാൽ പിന്നെ g ശ്രേണി ആരംഭിക്കും. SN 2006ga, SN 2006gb.... എന്നിങ്ങനെ.

ചിലപ്പോൾ ആദ്യം സൂപ്പർനോവയായി നാമകരണം ചെയ്യപ്പെടുന്ന ചില ഖഗോളവസ്തുക്കൾ പിന്നീട് വേറെ എന്തെങ്കിലും ഖഗോളവസ്തുകളാണ് എന്നു തിരിച്ചറിയപ്പെടാറുണ്ട്. അങ്ങനെയുള്ള അവസരത്തിൽ അത്തരം വസ്തുക്കളെ സൂപ്പർനോവകയുടെ പട്ടികയിൽ നിന്നു ഒഴിവാക്കും. പക്ഷെ അപ്പോൾ നിലവിലുള്ള പട്ടിക പുനഃക്രമീകരിക്കില്ല. അത് നിലവിലുള്ള സംഖ്യയിൽ നിന്നു തന്നെ മുന്നോട്ട് എണ്ണും.


1885 മുതലാണ്‌ ഈ രീതിയിൽ കണ്ടെത്തിയ വർഷവും അക്ഷരങ്ങളും ചേർത്ത് പേരിടീൽ തുടങ്ങിയത്. അതിനു ശേഷം വർഷത്തിൽ ഒരു സൂപ്പർനോവയെ മാത്രമേ കണ്ടെത്തിയുള്ളൂവെങ്കിലും സൂപ്പർപ്പർനോവയുടെ പേരിൽ വർഷത്തിനൊപ്പം അക്ഷരവും ചേർത്തു. (ഉദാ. SN 1885A, 1907A, തുടങ്ങിയവ). ഒറ്റ സൂപ്പർനോവയെ മാത്രം കണ്ടെത്തിയ സംഭവം അവസാനമായി നടന്നതു 1947ൽ ആണു. അതിനാൽ ആ സൂപ്പർ നോവയ്ക്കു SN 1947A എന്നാണു പേര്‌.

പഴയകാല സൂപ്പർനോവകളുടെ പേരുകൾ

പഴയകാലത്തു കണ്ടെത്തിയ സൂപ്പർനോവകൾ അവ കണ്ടെത്തിയ വർഷത്തിന്റെ അടിസ്ഥാനത്തിൽ അറിയപ്പെടുന്നു. ഉദാ: SN 185, SN 1006, SN 1054, SN 1572 (ടൈക്കോയുടെ നോവ),SN 1604 (കെപ്ലറുടെ സൂപ്പർനോവ).

സൂപ്പർനോവയുടെ വർഗ്ഗീകരണം

ജ്യോതിശാസ്ത്രജ്ഞർ സൂപ്പർനോവയെ കുറിച്ച് പഠിച്ച് അതിന്റെ സ്പെക്ട്രത്തിന്റെ അവശോഷണ രേഖകളിലെ (absorption lines) വിവിധ മൂലകങ്ങളുടെ സാന്നിദ്ധ്യം അടിസ്ഥാനമാക്കി അതിനെ വർഗ്ഗീകരിച്ചു.

ഹൈഡ്രജൻ രേഖയുടെ സാന്നിദ്ധ്യമോ അസാന്നിദ്ധ്യമോ ആണ് വർഗീകരണത്തിനു ഉപയോഗിക്കുന്ന ആദ്യത്തെ മാനദണ്ഡം. സൂപ്പർനോവയുടെ സ്പെക്ട്രത്തിൽ ദൃശ്യപ്രകാശത്തിന്റെ ഭാഗത്ത് ഹൈഡ്രജന്റെ ബാമർ രേഖകൾ ഉണ്ടെങ്കിൽ അതിനെ Type II സൂപ്പർനോവ എന്നും ഇല്ലെങ്കിൽ Type I സൂപ്പർനോവ എന്നും വർഗീകരിച്ചിരിക്കുന്നു.

ഈ വർഗ്ഗീകരണത്തിൽ സ്പെക്ട്രത്തിൽ മറ്റുള്ള മൂലകങ്ങളുടെ രേഖകളുടെ സാന്നിദ്ധ്യവും സൂപ്പർനോവയുടെ പ്രകാശ ഗ്രാഫിന്റെ (സൂപ്പർനോവയുടെ ദൃശ്യകാന്തിമാനവും സമയവും തമ്മിലുള്ള ഗ്രാഫ്) രൂപവും അനുസരിച്ച് പിന്നേയും തരം തിരിവുകൾ ഉണ്ട്.

സൂപ്പർ‌നോവയുടെ വർഗ്ഗീകരണം
വർഗ്ഗം പ്രത്യേകതകൾ
Type I
Type Ia ഹൈഡ്രജന്റെ അഭാവം. പീക്ക് ലൈനിൽ 615.0 nm-ൽ അയണീകൃതമായ സിലിക്കന്റെ സാന്നിദ്ധ്യം.
Type Ib അയണീകരിക്കപ്പെടാത്ത ഹീലിയത്തിന്റെ (He I) രേഖ 587.6 nm-ൽ. 615 nm-നു സമീപം സിലിക്കന്റെ ശക്തമായ അവശോഷണ രേഖകൾ ഇല്ല.
Type Ic ഹീലിയം രേഖകൾ ഇല്ല അല്ലെങ്കിൽ ദുർബലമാണ്‌. 615 nm-നു സമീപം സിലിക്കന്റെ ശക്തമായ അവശോഷണ രേഖകൾ ഇല്ല.
Type II
Type IIP പ്രകാശ ഗ്രാഫിൽ ഒരു ഉന്നതതലം പ്രാപിക്കുന്നു.
Type IIL പ്രകാശഗ്രാഫിന്റെ ഇറക്കം നേർ‌രേഖയിലൂടെ. (ദൃശ്യകാന്തിമാനവും സമയവും തമ്മിലുള്ള ഗ്രാഫ് നേർരേഖ).

Type II സൂപ്പർനോവയെ പിന്നേയും അതിന്റെ സ്പെക്ട്രം അനുസരിച്ച് പിന്നേയും തരം തിരിച്ചിരിക്കുന്നു. മിക്കവാറും എല്ലാ Type II സൂപ്പർനോവകളുടെ സ്പെക്ട്രത്തിൽ വളരെവീതിയിലുള്ള എമിഷൻ രേഖകൾ ആണു കാണുന്നത് (ഇതു സെക്കന്റിൽ ആയിരക്കണക്കിനു കിലോമീറ്റർ വേഗതയിൽ നടക്കുന്ന സൂപ്പർനോവയുടെ വികാസത്തെ സൂചിപ്പിക്കുന്നു). പക്ഷെ വളരെ ചുരുക്കം എണ്ണം വീതി കുറവായ എമിഷൻ രേഖകൾ ആണു കാണിക്കുന്നത്. ഇവയെ Type IIn സൂപ്പർനോവ എന്ന വിഭാഗത്തിലാണു പെടുത്തിയിരിക്കുന്നത്. "n" എന്നതു "narrow" എന്ന വാക്കിന്റെ ചുരുക്കമാണ്‌.


SN 1987K, SN 1993J തുടങ്ങിയ ചില സൂപ്പർ നോവകളുടെ തരം മാറി കൊണ്ടിരിക്കുന്നതായി കാണുന്നു. ആദ്യമാദ്യം ഹൈഡ്രജൻ രേഖകൾ കാണിക്കുമെങ്കിലും ആഴ്ചകൾക്കോ മാസങ്ങൾക്കോ ശേഷം ഹീലിയം രേഖകൾ പ്രാമുഖ്യം നേടുന്നതായി കാണുന്നു. ‍ Type II, Type Ib എന്നീ തരങ്ങളുടെ പ്രത്യേകതകൾ ഒരുമിപ്പിച്ചു പ്രദർശിപ്പിക്കുന്ന സൂപ്പർനോവകളെ Type IIb വിഭാഗത്തിലാണു പെടുത്തിയിരിക്കുന്നത്.

നക്ഷത്രങ്ങൾക്കിടയിലുള്ള സ്വാധീനം

ഘനമൂലകങ്ങളുടെ സ്രോതസ്സ്

ഓക്സിജനുമുകളിൽ ഭാരമുള്ള മൂലകങ്ങളുടെ പ്രധാന സ്രോതസ്സാണ് സൂപ്പർനോവകൾ. അയൺ-56 നൂം അതിനു താഴെ ഭാരം കുറഞ്ഞ മൂലകങ്ങൾ അണുസം‌യോജനം വഴിയും ഇരുമ്പിനു മുകളിൽ ഭാരം കൂടിയ മൂലകങ്ങൾ ന്യൂക്ലിയോസിന്തസൈസ് വഴിയുമാണ് സൃഷ്ടിക്കപ്പെടുന്നത്. ഉയർന്ന ഊഷ്മാവിലും സാന്ദ്രമായ ന്യൂട്രോണുകളുടെ സാന്നിദ്ധ്യത്തിലും ദ്രുതഗതിയിൽ നടക്കുന്ന ന്യൂക്ലിയോസിന്തസൈസിന്റെ രൂപമായ ആർ-പ്രക്രിയ (r-process) നടക്കുന്ന സ്ഥലങ്ങളാണ്‌ സൂപ്പർനോവകൾ എന്ന് തിരിച്ചറിഞ്ഞിട്ടുണ്ട്. ഈ പ്രക്രിയ ന്യൂട്രോണുകളാൽ സമ്പുഷ്ടമായ അസ്ഥിരമായ അണുകേന്ദ്രങ്ങൾ സൃഷ്ടിക്കുന്നു. ഇങ്ങനെ സൃഷ്ടിക്കപ്പെടുന്നവ ബീറ്റാ ശോഷണം വഴി സ്ഥിരതയുള്ളവയായി മാറുകയാണ്‌ ചെയ്യുക.

ടൈപ്പ് II സൂപ്പർനോവകളിൽ നടക്കാൻ സാധ്യതയുള്ള ആർ-പ്രക്രിയ ഇരുമ്പിനു ശേഷം വരുന്ന യുറേനിയം, പ്ലൂട്ടോണിയം തുടങ്ങി മൂലകങ്ങളിലെ പകുതിയെണ്ണത്തിനേയും സൃഷ്ടിക്കുന്നു. ഇരുമ്പിനു മുകളിലുള്ള മൂലകങ്ങളെ സൃഷ്ടിക്കാൻ പ്രാപ്തമായ മറ്റൊരു പ്രക്രിയ എസ്.പ്രക്രിയ (s-process) മാത്രമാണ്‌, പ്രായം കൂടിയ ചുവന്ന ഭീമൻ നക്ഷത്രങ്ങളിൽ നടക്കുന്ന് ഈ പക്രിയ വേഗത കുറഞ്ഞതും ബിസ്മത്തിനു മുകളിൽ ഭാരമുള്ള മൂലകങ്ങളെ സൃഷ്ടിക്കാൻ കഴിവുള്ളതുമല്ല.

നക്ഷത്രപരിണാമം

സൂപ്പർനോവ 
വലിയ മഗല്ലാനിക് മേഘത്തിലെ SNR 0519-69.0 എന്ന സൂപ്പർനോവയുടെ അവശിഷ്ടം. ചന്ദ്ര എക്സ്-റേ ദൂരദർശിനി, ഹബ്ബിൾ ബഹിരാകാശ ദൂരദർശിനി എന്നിവ എടുത്ത ചിത്രങ്ങൾ സംയോജിപ്പിച്ചത്.

ഗാഢമായ ഒരു വസ്തുവും ആഘാതതരംഗങ്ങളാൽ വികസിക്കുന്ന ദ്രവ്യത്തിന്റെ പാളികളുമാണ് സൂപ്പർനോവയുടെ ശേഷമായുണ്ടാകുക. വികസിക്കുന്ന ഈ ദ്രവ്യത്തിന്റെ മേഘപാളികൾ ചുറ്റിലുമുള്ള വസ്തുക്കളെ ദൂരേക്ക് തൂത്തുകൊണ്ട് പോകുന്നു, ഈ പ്രവർത്തനം ഏകദേശം രണ്ട് നൂറ്റാണ്ട് വരെ തുടരുന്നു. ഈ ദ്രവ്യമേഘങ്ങളുടെ പാളികൾ പിന്നെയും വികസിക്കുകയും സാവധാനം തണുക്കുകയും ചുറ്റുമുള്ള പദാർത്ഥങ്ങളുമായി കൂടിച്ചേരുകയും ചെയ്യുന്നു, ഇത് ഏകദേശം 10,000 വർഷം വരെ നീണ്ടുനിൽക്കും ഈ പ്രക്രിയ.

സാമാന്യ ജ്യോതിശാസ്തമനുസരിച്ച് ഹൈഡ്രജൻ, ഹീലിയം എന്നിവയും കുറച്ചു അളവിലുള്ള ലിഥിയവുമാണ്‌ മഹാവിസ്ഫോടത്തോടെ ഉണ്ടായ മൂലകങ്ങൾ, ബാക്കിയുള്ള മൂലകങ്ങൾ നക്ഷത്രങ്ങളിലും സൂപ്പർനോവ പോലുള്ളവ വഴിയുമാണ്‌ സൃഷ്ടിക്കപ്പെടുന്നത്. സൂപ്പർനോവകൾ ചുറ്റുമുള്ള നക്ഷത്ര-ഇതര ഭാഗങ്ങളെ ലോഹമൂലകങ്ങളാൽ സമ്പുഷ്ടമാക്കും.

സൂപ്പർനോവ 
വലിയ മഗൾല്ലനിക് മേഘത്തിൽ സാന്ദ്രമായ വാതക മേഘങ്ങൾക്കിടയിൽ നിലനിൽക്കുന്ന N 63A എന്ന സൂപ്പർനോവ ബാക്കിപത്രം.

ഇങ്ങനെ പുറത്തു വിടുന്ന മൂലകങ്ങൾ ചുറ്റിലുമുള്ള നക്ഷത്രരൂപവത്കരണ മേഖലകളായ തന്മാത്രാ മേഘങ്ങളുടെ ഭാഗമാകും. അതിനാൽ തന്നെ ഒരോ തരം നക്ഷത്ര രൂപവത്കരണത്തിന്റെയും ഘടകങ്ങൾ നേരിയ വ്യത്യാസം ഉണ്ടായിരിക്കുന്നതാണ്‌, ഇത് ശുദ്ധമായ ഹൈഡ്രജന്റെയും ഹീലിയത്തിന്റെയും മിശ്രിതം മുതൽ ലോഹങ്ങളാൽ സമ്പുഷ്ടമായ മിശ്രിതം വരെയാകാം. ബഹിരാകാശത്തിലുടനീളം ഘനമൂലകങ്ങളുടെ വിതരണത്തിൽ മുഖ്യമായ പങ്ക് വഹിക്കുന്നവയാണ്‌ സൂപ്പർനോവകൾ. ഒരു നക്ഷത്രത്തിന്റെ ജീവിതത്തിൽ സ്വാധീനം ചെലുത്തുന്നവയാണ് നക്ഷത്രരൂപവത്കരണത്തോടെ ആ നക്ഷത്രത്തിന്റെ ഭാഗമാകുന്ന മൂലക മിശ്രിതങ്ങൾ, അതുപോലെ അതിനെ ഭ്രമണം ചെയ്യുന്ന ഗ്രഹങ്ങൾ ഉണ്ടായിത്തീരുന്നതിലും.

സൂപ്പർനോവയുടെ ഫലമായി വികസിക്കുന്ന അതിന്റെ അവശിഷ്ടങ്ങളുടെ ഗതികോർജ്ജം ബഹിരാകാശത്ത് ചുറ്റിലുമുള്ള ഗാഢമായ തന്മാത്ര മേഘങ്ങളിൽ സമ്മർദ്ദം ചെലുത്തുന്നതിന്റെ ഫലമായി നക്ഷത്രരൂപവത്കരണത്തിനു കാരണമായേക്കാം. പ്രക്ഷുബ്ധമായ തരത്തിലുള്ള മർദ്ദമാണ്‌ ഉണ്ടാകുന്നതെങ്കിൽ മേഘത്തിൽ നടക്കുന്ന നക്ഷത്രരൂപവത്കരണത്തെ പ്രതികൂലമായും ബാധിക്കാനിടയുണ്ട്.

കുറഞ്ഞ ദൈർഘ്യമുള്ള റേഡിയോആക്റ്റിവ് ഐസോടോപ്പുകളുടെ ഫലമായുണ്ടാകുന്ന പദാർത്ഥങ്ങളുടെ പഠനത്തിൽ നിന്നും മനസ്സിലാകുന്നത് 450 കോടി വർഷം മുൻപ് സമീപത്തെവിടെയോ നടന്ന സൂപ്പർനോവ സ്ഫോടനം സൗരയൂഥത്തിന്റെ ഘടക പദാർത്ഥങ്ങളെ നിർണ്ണയിക്കുന്നതിൽ പങ്കുവഹിച്ചിരുന്നു എന്നാണ്, അതുപോലെ സൗരയൂഥത്തിന്റെ രൂപവത്കരണത്തിലും. ജ്യോതിർകാലയളവുകൾ മുൻപ് സൂപ്പർനോവ ഫലമായുണ്ടായ ഘനമൂലകങ്ങൾ ഭൂമിയിലെ ജീവനു കാരണമായ രാസപദാർത്ഥങ്ങൾക്ക് കാരണമായിരിക്കണം.

ഭൂമിക്ക് മേലുള്ള ആഘാതം

ഭൂമിയുടെ ജൈവമണ്ഡലത്തെ കാര്യമായി ബാധിക്കാവുന്ന 100 പ്രകാശവർഷങ്ങളിൽ കുറഞ്ഞ ദൂരത്തുവെച്ച് നടക്കുന്ന സൂപ്പർനോവ സ്ഫോടനങ്ങളെയാണ്‌ സമീപ സൂപ്പർനോവ സ്ഫോടനങ്ങൾ എന്നത് കൊണ്ടുദ്ദേശിക്കുന്നത്. സൂപ്പർനോവയിൽ നിന്നും വരുന്ന ഗാമാ കിരണങ്ങൾ ഉന്നതതല അന്തരീക്ഷത്തിൽ ഒരു രാസപ്രക്രിയയ്ക്ക് രൂപം നൽകുകയും അന്തരീക്ഷത്തിലെ തന്മാത്ര രൂപത്തിലുള്ള നൈട്രജനെ നൈട്രജൻ ഓക്സൈഡാക്കിമാറ്റുകയും ചെയ്യും, ഇത് ഓസോൺ പാളിയെ നശിപ്പിക്കുകയും മാരകമായ സൗര, കോസ്മിക് കിരണങ്ങൾ ഭൂമിയുടെ ഉപരിതലത്തിലെത്തുവാൻ കാരണമായി തീരുകയും ചെയ്യും. ഇത്തരത്തിലൊന്നാണ്‌ ഓർഡോവിഷിയൻ നാശത്തിനു (Ordovician extinction) കാരണമായിത്തീർന്നതെന്ന് അനുമാനിക്കുന്നു, ആ നാശത്തിൽ സമുദ്രജീവികളിൽ 60 ശതമാനവും നശിച്ചുപോയതായി കണക്കാക്കുന്നു. ഭൂമിയിലെ പാറകളിലെ സമാന്തരപാളികളിലായ അവസ്ഥയിൽ ലോഹ ഐസോടോപ്പുകളുടെ രൂപത്തിൽ മുൻപ് നടന്ന സൂപ്പർനോവകളുടെ മുദ്രകൾ ഭൂമിയിൽ കാണപ്പെടുമെന്നാണ് 1996 ൽ മുന്നോട്ട് വച്ച സിദ്ധാന്തം സമർത്ഥിക്കുന്നത്. കൂടാതെ ശാന്തസമുദ്രത്തിന്റെ ആഴങ്ങളിലുള്ള പാറകളിൽ അയൺ-60 ന്റെ സാന്നിദ്ധ്യമുണ്ടെന്ന് റിപ്പോർട്ടുകളുണ്ടായിട്ടുണ്ട്.

ടൈപ്പ് Ia സൂപ്പർനോവയാണ് കൂടുതൽ അപകടകാരി. കാരണം ടൈപ്പ് Ia സൂപ്പർനോവ ഉണ്ടാകുന്നത് മങ്ങിയതും സാധാരണമായതുമായ വെള്ളക്കുള്ളന്മാരിൽ നിന്നാണ്. ഇതുവരെ പഠനവിധേയമാക്കാത്തതും പ്രതീക്ഷിക്കാത്തതുമായ നക്ഷത്രവ്യൂഹങ്ങളിൽ നിന്ന് ഈ തരത്തിൽപ്പെട്ട് സൂപ്പർനോവ ഉണ്ടാകാൻ സാധ്യതയുണ്ട്. ഒരു സിദ്ധാന്തമനുസരിച്ച് ടൈപ്പ് Ia സൂപ്പർനോവ ഭൂമിയെ ബാധിക്കണമെങ്കിൽ അത് ആയിരം പാർസെകിനുള്ളിൽ (3300 പ്രകാശവർഷങ്ങൾ) ഉണ്ടാകണമെന്നാണ്, ഇതിനു സാധ്യതയുള്ള ഏറ്റവും അടുത്ത നക്ഷത്രം IK പെഗാസി (IK Pegasi, താഴെ കാണുക) ആണ്. അടുത്തുനടത്തിയ ചില കണക്കുകൂട്ടലുകൾ പ്രകാരം എട്ട് പാർസെകിനു (26 പ്രകാശവർഷങ്ങൾ) കുറച്ചു കുറഞ്ഞ ദൂരത്തിൽ നടക്കുന്ന ടൈപ്പ് II സൂപ്പർനോവ കാരണമായി ഭൂമിയുടെ ഓസോൺ പാളി പകുതിയും നശിച്ചുപോകുമെന്നാണ്.

സൂപ്പർനോവ ആകാൻ സാധ്യതയുള്ള നക്ഷത്രങ്ങൾ

ആകാശഗംഗയിലെ ചില ഭീമൻ നക്ഷത്രങ്ങൾ ചുരുങ്ങിയ കാലം കൊണ്ട് (ആയിരക്കണക്കിന്‌ വർഷങ്ങൾ മുതൽ ദശലക്ഷക്കണക്കിന്‌ വർഷങ്ങൾ വരെ) സൂപ്പർനോവ ആകാൻ സാധ്യതയുള്ളവയാണ്‌. ഈറ്റ കരിന (ഓരായം രാശി), തിരുവാതിര (ശബരൻ രാശി), ചിത്തിര (കന്നി രാശി), തൃക്കേട്ട (വൃശ്ചികം രാശി), ρ Cas, RS Oph, U Sco, VY CMa, KPD1930+2752, HD 179821, IRC+10420 മുതലായവ ഇത്തരത്തിലുള്ളവയാണ്‌.

ഭാദ്രപദം രാശിയിലെ IK പെഗാസി (IK Pegasi (HR 8210)) ആണ്‌ സൂപ്പർനോവയാകാൻ സാധ്യതയുള്ള നക്ഷത്രങ്ങളിൽ നമുക്ക് ഏറ്റവുമടുത്തുള്ളത്. 150 പ്രകാശവർഷമാണ്‌ സൂര്യനിൽ നിന്നുള്ള ഇതിന്റെ ദൂരം. സൂര്യന്റെ 1.15 ഇരട്ടി പിണ്ഡമുള്ള ഒരു വെള്ളക്കുള്ളനും 31 ദശലക്ഷം കിലോമീറ്റർ മാത്രം ദൂരെ ഒരു സാധാരണ നക്ഷത്രവുമാണ്‌ ഈ ഇരട്ട നക്ഷത്രത്തിലുള്ളത്. ടൈപ് Ia സൂപ്പർനോവയാകാനാവശ്യമായ പിണ്ഡം വെള്ളക്കുള്ളൻ കൈവരിക്കാൻ ദശലക്ഷക്കണക്കിന്‌ വർഷങ്ങളെടുക്കുമെന്ന് കരുതപ്പെടുന്നു.

ഇതും കാണുക

അവലംബം

കൂടുതൽ വായനയ്ക്ക്

പുറത്തേക്കുള്ള കണ്ണികൾ

Tags:

സൂപ്പർനോവ പേരിനു പിന്നിൽസൂപ്പർനോവ നിരീക്ഷണ ചരിത്രംസൂപ്പർനോവ സ്പെക്ട്രൽ വിശദീകരണവും തരങ്ങളുംസൂപ്പർനോവ ആവൃത്തിസൂപ്പർനോവ ഭീമൻ നക്ഷത്രം സൂപ്പർ നോവ ആകുന്ന പ്രക്രിയസൂപ്പർനോവ യുടെ ബാക്കിപത്രംസൂപ്പർനോവ യ്ക്കു പേരിടുന്ന വിധംസൂപ്പർനോവ യുടെ വർഗ്ഗീകരണംസൂപ്പർനോവ നക്ഷത്രങ്ങൾക്കിടയിലുള്ള സ്വാധീനംസൂപ്പർനോവ ആകാൻ സാധ്യതയുള്ള നക്ഷത്രങ്ങൾസൂപ്പർനോവ ഇതും കാണുകസൂപ്പർനോവ അവലംബംസൂപ്പർനോവ കൂടുതൽ വായനയ്ക്ക്സൂപ്പർനോവ പുറത്തേക്കുള്ള കണ്ണികൾസൂപ്പർനോവഖഗോളംനക്ഷത്രംനോവപ്രകാശമാനം

🔥 Trending searches on Wiki മലയാളം:

ഖിലാഫത്ത്മാധ്യമം ദിനപ്പത്രംകാസർഗോഡ്കേരള സാഹിത്യ അക്കാദമിമൊത്ത ആഭ്യന്തര ഉത്പാദനംകുമ്പസാരംവിവരസാങ്കേതികവിദ്യകുഞ്ഞുണ്ണിമാഷ്ആരോഗ്യംസൽമാൻ അൽ ഫാരിസിജവഹർലാൽ നെഹ്രുയൂട്ടറൈൻ ഫൈബ്രോയ്‌ഡ്എയ്‌ഡ്‌സ്‌തൃശൂർ പൂരംസന്ധി (വ്യാകരണം)ഡിഫ്തീരിയആയുർവേദംപ്രാചീനകവിത്രയംറിപൊഗോനംആത്മഹത്യയോഗർട്ട്അനു ജോസഫ്രാമൻഇബ്രാഹിം ഇബിനു മുഹമ്മദ്കംബോഡിയമുടിയേറ്റ്വദനസുരതംബൈബിൾകൂവളംഗൗതമബുദ്ധൻശോഭ സുരേന്ദ്രൻമാസംദശപുഷ്‌പങ്ങൾവ്യാഴംസബഅ്അർജന്റീന ദേശീയ ഫുട്ബോൾ ടീംഫ്രഞ്ച് വിപ്ലവംമഹേന്ദ്ര സിങ് ധോണിതൃക്കടവൂർ ശിവരാജുറഫീക്ക് അഹമ്മദ്ഉത്തരാധുനികതകോപ്പ അമേരിക്കസൂര്യഗ്രഹണംമുല്ലപ്പെരിയാർ അണക്കെട്ട്‌രാജീവ് ചന്ദ്രശേഖർകഅ്ബഇലവീഴാപൂഞ്ചിറമുംബൈ ഇന്ത്യൻസ്ബിഗ് ബോസ് മലയാളംക്യൂ ഗാർഡൻസ്വുദുസുലൈമാൻ നബിഇടുക്കി ജില്ലകുരിശിലേറ്റിയുള്ള വധശിക്ഷമുഗൾ സാമ്രാജ്യംഅബ്ബാസ് ഇബ്നു അബ്ദുൽ മുത്തലിബ്മന്ത്ചരക്കു സേവന നികുതി (ഇന്ത്യ)ബുദ്ധമതത്തിന്റെ ചരിത്രംമലമുഴക്കി വേഴാമ്പൽബ്രസീൽ ദേശീയ ഫുട്ബോൾ ടീംഅരിസ്റ്റോട്ടിൽമരിയ ഗൊരെത്തിവിഷാദരോഗംവെരുക്രതിസലിലംരാജ്യങ്ങളുടെ പട്ടികധനുഷ്കോടിസ്തനാർബുദംഈഴവർരബീന്ദ്രനാഥ് ടാഗോർEthanolഅർബുദംആനന്ദം (ചലച്ചിത്രം)2022 ഫിഫ ലോകകപ്പ്ഉലുവസുരേഷ് ഗോപിദശാവതാരം🡆 More