Rna

Ribonukleiinhape ehk RNA (inglise keeles ribonucleic acid; varasem eestikeelne lühend RNH) on bioloogiline makromolekul ehk biopolümeer.

RNA osaleb mitmetes eluks vajalikes protsessides, näiteks geenide kodeerimisel ja dekodeerimisel, geenide regulatsioonis ja ekspressioonis. RNA on üheahelaline polünukleotiidide jada, mis on omavahel seotud fosfodiestersidemetega. Rakulised organismid kasutavad geneetilise informatsiooni vahendajana informatsiooni-RNA-d (mRNA ehk messenger-RNA), samas on mõnedel viirustel geneetiline informatsioon kodeeritud RNA kujul.

Mõned RNA molekulidest rakus on katalüütiliselt aktiivsed, mõned vastutavad geeniekspressiooni eest, mõned on rakuliste signaalide vastuvõtjad ning vahendajad. Üks nendest protsessidest on valgusüntees ribosoomis, kus mRNA-d osalevad valgu monomeeride ehk aminohapete kokkuliitmisel polüpeptiidideks. Selleks protsessiks on vajalikud ka transport-RNA-d (tRNA), mis transpordivad aminohappeid ribosoomi, ja ribosoomi-RNA-d (rRNA), mis ühendavad aminohapped omavahel valkudeks.

Võrdlus DNA-ga

RNA keemiline struktuur on väga sarnane DNA omaga, kuid erineb sellest kolmel moel:

  • Erinevalt kaheahelalisest DNA-st on RNA enamasti üheahelaline molekul ning tunduvalt lühem kui DNA molekulid. Sellegipoolest võib RNA komplementaarsuse alusel paarduda ja moodustada kaksikheelikseid, näiteks tRNA puhul.
  • DNA sisaldab suhkrujäägina desoksüriboosi, kuid RNA sisaldab riboosi. Desoksüriboosis puudub tsüklilises pentoosis 2’ positsioonis hüdroksüülgrupp. See hudroksüülgrupp muudab RNA ebastabiilsemaks, kuna hüdrolüüs saab toimuda suurema tõenäosusega.
  • DNA-s on adeniinile komplementaarne alus tümiin, RNA-s aga uratsiil, mis on tümiini metüleerimata vorm.

Nagu ka DNA-s on enamikus bioloogiliselt aktiivsetes RNA-des, näiteks mRNA, tRNA, rRNA, snRNA ja teised mittekodeerivad RNA-d, komplementaarsed järjestused, mis võimaldavad RNA-l voltuda ja moodustada kaksikheeliks. Selliste RNA-de analüüsimine on näitanud, et nad ei ole primaarstruktuuriga. Erinevalt DNA-st ei sisalda paardunud RNA pikki kaksikheelikseid, vaid pigem lühikeste heeliksite kogumeid, mis moodustavad globulaarsete valkudega sarnaseid struktuure. Heeliksite kogumeid moodustades on RNA võimeline omandama ensüümidele omast katalüütilist aktiivsust. Katalüütilise aktiivsusega RNA-d nimetatakse ribosüümiks. Näiteks peptiidsideme sünteesi eest vastutab ribosoomis 23S rRNA, millel on katalüütiline ehk ribosüümne aktiivsus.

Struktuur

Iga nukleotiid RNA-s sisaldab suhkrujäägina riboosi, mille süsinikud nummerdatakse 1’ kuni 5’. 1’ positsioonile on seondunud alus, adeniin (A), tsütosiin (C), guaniin (G) või uratsiil (U). Adeniin ja guaniin on puriinid, tsütosiin ja uratsiil on pürimidiinid. Fosfaatgrupp on seondunud ühe riboosi 3’ ja teise riboosi 5’ süsinikuga. Füsioloogilisel pH-l on fosfaatgrupid negatiivse laenguga ja seega on RNA negatiivse laenguga molekul ehk polüanioon. Lämmastikalused võivad vesiniksidemeid moodustada tsütosiini ja guaniini, adeniini ja uratsiili ning guaniini ja uratsiili vahel.

Struktuuriliselt eristab RNA DNA-st riboosi 2’ süsinikule seondunud hüdroksüülgrupp. RNA biheeliks võtab selle funktsionaalse grupi tõttu A-vormi, DNAl on dominantseks konformatsiooniks ehk ruumiliseks struktuuriks B-vorm. A-vorm tingib RNA kaksikheeliksil väga sügava ja kitsa suure vao ning madala ja laia väikse vao. 2’-OH grupi olemasolu tõttu on konformatsiooniliselt paindlikes RNA regioonides võime keemiliselt atakeerida külgnevaid fosfodiestersidemeid ja lõhestada RNA suhkur-fosfaat selgrooga.

RNA transkribeeritakse ainult nelja lämmastikalusega (adeniin, tsütosiin, guaniin ja uratsiil), kuid aluseid ja seondunud suhkrujääke on võimalik erinevatel viisidel modifitseerida. Pseudouridiin (Ψ) ja ribotümidiin (T) on ühed enamlevinud RNA modifikatsioonid. Pseudouridiin moodustub, kui uratsiili ja riboosi vahel muutub C-N side C-C sidemeks. Veel üks tavaline RNA molekulis leiduv modifikatsioon hüpoksantiin on puriini derivaat ning nukleosiidina kutsutakse inosiiniks (I). Inosiinil on võtmeroll geneetilise koodi Wobble hüpoteesis, mille järgi tRNA antikoodoni 5'alus, mis seondub mRNA koodoni 3'alusega ei ole ruumiliselt nii piiratud ning võivad ebastandardselt aluspaarduda.

Süntees

RNA sünteesi katalüüsib ensüüm, RNA polümeraas, mis kasutab üht DNA-ahelat matriitsina, et sünteesida komplementaarne RNA ahel eehk transkript, seda protsessi nimetatakse transkriptsiooniks. Transkriptsiooni initsiatsioon algab ensüümi seondumisega DNA promootori järjestusele. DNA kaksikheeliksi kerib lahti polümeraasi helikaasse aktiivsusega piirkond. RNA polümeraas liigub seejärel mööda matriitsahelat 3’–5’ suunal ja uue RNA molekuli süntees toimub 5’–3’ suunal. DNA järjestuses on kindlaks määratud, millal RNA süntees lõpetatakse ehk termineeritakse.

RNA molekule modifitseeritakse tihti kohe pärast transkriptsiooni. Näiteks eukarüootsele pre-mRNA-le lisatakse polü-A saba ja 5’-cap struktuur ning splaissosoomi abil lõigatakse pre-mRNAst välja intronid, et saaks moodustuda funktsionaalne mRNA.

On olemas ka rida RNA-sõltuvaid RNA polümeraase, mis kasutavad matriitsina RNA-d, et sünteesida uus RNA ahel. Näiteks mitmed RNA viirused kasutavad seda ensüümi oma genoomi replitseerimiseks. Lisaks on RNA-sõltuv RNA polümeraas oluline RNA interferentsi toimimisel.

RNA tüübid

Ülevaade

Informatsiooni-RNA (mRNA) on RNA, mis kannab informatsiooni DNA-lt ribosoomile. mRNA-de kodeerivad järjestused määravad aminohappelise järjestuse sünteesitavas valgus. Paljud RNA-d ei kodeeri valku, umbes 97% transkriptsiooni produktidest eukarüootides.).

Mittekodeerivad RNAd võivad olla kodeeritud enda geenide poolt (RNA geenid), kuid võivad olla ka pre-mRNA-st välja lõigatud intronid. Kõige tavalisemad mittekodeerivad RNA-d on transpordi-RNA (tRNA) ja ribosoomi-RNA (rRNA) ning mõlemad on olulised translatsiooni protsessis. On olemas selliseid mittekodeerivaid RNA-sid, mis osalevad geeniregulatsioonis, RNA töötlemises ja teistes protsessides. Mõned RNA-d on võimelised katalüüsima keemilisi reaktsioone nagu näiteks teiste RNA-de lõikamine ja ligeerimine ning peptiidsideme moodustumine ribosoomis – selliseid RNA-sid kutsutakse ribosüümideks.

Translatsioonis

mRNA kannab informatsiooni valgujärjestuse kohta ribosoomi, mis on valgusünteesi masinavärgiks rakus. mRNA on kodeeritud niimoodi, et järjestikused kolm nukleotiidi (koodon) vastavad ühele aminohappele. Kui eukarüootsetes rakkudes on DNA-lt transkribeeritud mRNA eellasmolekul (pre-mRNA), siis protsessitakse see mRNA-ks. Protsessimise käigus lõigatakse välja intronid – pre-mRNA mittekodeerivad alad. Seejärel eksporditakse mRNA tuumast tsütoplasmasse, kus ta seondub ribosoomile ja transleeritakse tRNA abiga vastavaks valguks. Prokarüootses rakus, millel puudub tuum ja tsütoplasmavõrgustik, võib mRNA seonduda ribosoomile ka juba mRNA transkribeerimise ajal.

Transpordi-RNA (tRNA) on väike RNA ahel, mis kannab kindlaid aminohappeid ribosoomi valgusünteesi aktiivtsentrisse, kus aminohapped liidetakse kasvavale polüpeptiidahelale. tRNA-l on piirkonnad aminohapete seondumiseks ja antikoodonregioon koodonite äratundmiseks mRNA ahelal.

Ribosoomi-RNA (rRNA) on ribosoomi katalüütiline komponent. Eukarüootsed ribosomid koosnevad neljast erinevast rRNA molekulist: 18S, 5.8S, 28S and 5S rRNA. Kolm rRNA molekuli sünteesitakse tuumakeses ja üks sünteesitakse mujal. Tsütoplasmas moodustavad ribosomaalsed RNA-d ja valgud nukleoproteiini ehk ribosoomi. Ribosoom seob mRNA-d ja teostab valgusünteesi. Ühele mRNA-le võib korraga seonduda mitu ribosoomi.

Regulatoorsed RNA-d

Mitmed RNA-de tüübid on võimelised geeniekspressiooni maha suruma olles komplementaarsed transleeritavale mRNA-le või geenidele DNA-s. MikroRNA-sid (miRNA; 21-22nt) leidub eukarüootsetes rakkudes. Enam on kirjeldatud neid taimedes ja ussikestes, samuti on inimestel umbes 250 geeni, mis kodeerivad miRNA-sid. miRNAd toimivad läbi RNA interferentsi (RNAi), kus miRNA efektorkompleks ja ensüümid saavad seonduda komplementaarsele RNA-le, blokeerida mRNA transleerimist või kiirendada mRNA degradatsiooni.

Väike interfereeriv RNA (siRNA; 20–25 nt) on lühike kaheahelaline RNA. Neid tekib tihti viraalsete RNAde lagundamisel, samas on ka endogeenseid siRNAde allikaid. siRNA-d käituvad sarnaselt miRNA-dega läbi RNA interferentsi. Mõned miRNA-d ja siRNA-d võivad põhjustada märklaud-geenide metüleerimist, mis lõpetab või vähendab nende geenide transkriptsiooni.

Paljudel prokarüootidel on CRISPR RNA-d, mis moodustavad RNA interferentsiga sarnase süsteemi.

Antisenss-RNA-d on laialt levinud, enamus neist surub maha geene, kuid mõned võivad olla transkriptsiooni aktivaatorid. Antisenss-RNA võib seonduda mRNA-le ning seejärel moodustub kaheahelaline RNA, mille lagundavad ensüümid.

Pikad mittekodeerivad RNA-d reguleerivad eukarüootide geene. Üks neist RNA-dest on Xist, mis katab emaste imetajate ühe X kromosoomi ning see kromosoom inaktiveeritakse.

mRNA võib sisaldada regulatoorseid elemente nagu näiteks ribolüliti, 5’ mittetransleeritav regioon või 3’ mittetransleeritav regioon: need cis-regulatoorsed elemendid reguleerivad vastava mRNA aktiivsust. Mittetransleeritavad regioonid võivad sisaldada ka elemente, mis reguleerivad teisi geene.

RNA töötlemisel osalevad RNA-d

Mitmed RNA-d osalevad teiste RNA-de modifitseerimisel. Pre-mRNA-st lõigatakse splaissosoomidega välja intronid, mis sisaldavad erinevaid väikeseid tuuma RNA-sid (snRNA). Mõned intronid võivad olla ribosüümid. RNA-d saab modifitseerida ka nukleotiidide modifitseerimisega. Eukarüootides modifitseeritakse RNA nukleotiide üldjuhul väikeste tuumakese RNA-de abil (snoRNA; 60–300 nt), mida leidub tuumakeses ja Cajali kehakestes. snoRNA-d assotsieeruvad ensüümidega, mis juhitakse aluspaardumise abil RNA piirkonda, mida modifitseerima hakatakse. Seejärel modifitseerivad need ensüümid RNA nukleotiide. RNA võib olla ka metüleeritud.

RNA genoomid

Nagu DNA, kannab ka RNA geneetilist informatsiooni. RNA viiruste genoomid koosnevad RNA-st, mis kodeerib ka erinevaid viiruse valke. Viroidid on grupp patogeene, mis koosnevad ainult RNA-st, ei kodeeri valke ja replitseeritakse peremeestaime raku polümeraasiga.

RNA ümberpööratud transkriptsioonis

Viirused, mis kasutavad ümberpööratud transkriptsiooni replitseerivad oma DNA genoome kasutades matriitsahelana RNA-d. Seejärel transkribeeritakse DNA koopiatelt uued RNA-d. Retrotransposoonid levivad samuti kopeerides DNA-d ja RNA-d üksteise pealt.

Telomeraas sisaldab RNA-d, mida kasutatakse matriitsina eukarüootsete kromosoomide otste sünteesimiseks.

Kaheahelaline RNA

Kaheahelaline RNA (dsRNA) on RNA, millel on sarnaselt DNA-ga kaks komplementaarset ahelat. Mõnede viiruste geneetilise materjali moodustab dsRNA (dsRNA viirused). dsRNA-d (viraalne RNA või siRNA) võivad põhjustada eukarüootsetes rakkudes RNA interferentsi.

Vaata ka

Viited

Välislingid

Tags:

Rna Võrdlus DNA-gaRna StruktuurRna SünteesRna RNA tüübidRna Vaata kaRna ViitedRna VälislingidRnaBiopolümeerInformatsiooni-RNAMakromolekulOrganism

🔥 Trending searches on Wiki Eesti:

Šveitsi linnade loendVulkaanEesti saarte loendSüdame rütmihäiredEuroCarles PuigdemontLaevRakkVõhandu jõgiAdolf HitlerMetafoorEesti omavalitsuste haldusreformFilosoofiaKorvpallPuhkpillide loendKristina KallasTallinnGraniitSkorpionilisedSeitse maailmaimetPärnu maakondPaul ViidingPõlva maakondJuku-Kalle RaidMacauVikipeediaSigaretimarkide loendJääkaruLydia KoidulaBrasiiliaSuurbritannia Eurovisiooni lauluvõistluselAntibiootikumidAnni KreemSõltumatu muutujaLenna KuurmaaKongo jõgiMalmArvo ValtonEesti Vabariigi aastapäevNoor-EestiFriedrich Robert FaehlmannU2LeopardAprillKuuKristjan Jaak PetersonÕnne 13Enn UuetoaPopulatsioonBudismPinge (elekter)Kristiina RossKoaala28. märtsHando RunnelGepardGlütseroolGruusiaTundraKonstantin PätsEesti sõjaväelised auastmedAustraaliaJean-Antoine-Marie IdracDelfiNõukogude LiitVene-Ukraina sõdaRaudPeipsi järvPrantsusmaa linnade loendVana-KreekaAmeerika ÜhendriigidErosioon🡆 More