อนุพันธ์

ในวิชาคณิตศาสตร์ อนุพันธ์ (อังกฤษ: derivatives) ของฟังก์ชันของตัวแปรจริง เป็นการวัดการเปลี่ยนแปลงของค่าของฟังก์ชันเทียบกับการเปลี่ยนแปลงของอาร์กิวเมนต์ (ค่าที่ป้อนเข้าหรือตัวแปรต้น) อนุพันธ์เป็นเครื่องมือพื้นฐานของแคลคูลัส ตัวอย่างเช่น อนุพันธ์ของตำแหน่งของวัตถุที่กำลังเคลื่อนที่เมื่อเทียบกับเวลา คือ ความเร็วของวัตถุนั้น ซึ่งเป็นการวัดว่าตำแหน่งของวัตถุมีการเปลี่ยนแปลงอย่างรวดเร็วเพียงใดเมื่อเวลาผ่านไป

อนุพันธ์
กราฟของฟังก์ชันแสดงด้วยเส้นสีดำ และเส้นสัมผัสแสดงด้วยเส้นสีแดง ความชันของเส้นสัมผัสมีค่าเท่ากับอนุพันธ์ของฟังก์ชันที่จุดสีแดง

อนุพันธ์ของฟังก์ชันตัวแปรเดียวที่ตัวแปรต้นใด ๆ คือความชันของเส้นสัมผัส (tangent) ที่สัมผัสกับกราฟของฟังก์ชันที่จุดนั้น เส้นสัมผัสคือการประมาณเชิงเส้นของฟังก์ชันที่ใกล้เคียงที่สุด (best linear approximation) กับค่าตัวแปรต้นนั้น ด้วยเหตุนี้ อนุพันธ์มักอธิบายได้ว่าเป็น "อัตราการเปลี่ยนแปลงขณะใดขณะหนึ่ง" ซึ่งก็คืออัตราส่วนของการเปลี่ยนแปลงขณะใดขณะหนึ่งของตัวแปรตามต่อตัวแปรต้นหรือตัวแปรอิสระ

กระบวนการหาอนุพันธ์เรียกว่า การหาอนุพันธ์ (differentiation หรือ การดิฟเฟอเรนชิเอต) ส่วนกระบวนการที่กลับกันเรียกว่า การหาปฏิยานุพันธ์ (antidifferentiation) ทฤษฎีบทมูลฐานของแคลคูลัสกล่าวว่าการหาปฏิยานุพันธ์เหมือนกันกับการหาปริพันธ์ (integration หรือ การอินทิเกรต) การหาอนุพันธ์และการหาปริพันธ์เป็นตัวดำเนินการพื้นฐานในแคลคูลัสตัวแปรเดียว

อนุพันธ์ของฟังก์ชันเป็นมโนทัศน์ (concept) หนึ่งในสองมโนทัศน์หลักของแคลคูลัส (อีกมโนทัศน์หนึ่งคือปฏิยานุพันธ์ ซึ่งคือตัวผกผันของอนุพันธ์)

การหาอนุพันธ์และอนุพันธ์

การหาอนุพันธ์ เป็นการคำนวณเพื่อที่จะได้มาซึ่งอนุพันธ์ อนุพันธ์ของฟังก์ชัน y = f(x) ของตัวแปร x คืออัตราที่ค่า y ของฟังก์ชันเปลี่ยนแปลงไปต่อการเปลี่ยนแปลงของตัวแปร x เรียกว่า อนุพันธ์ของ f เทียบกับ x ถ้า x และ y เป็นจำนวนจริง และถ้ากราฟของฟังก์ชัน f ลงจุดเทียบกับ x อนุพันธ์ก็คือความชันของเส้นกราฟในแต่ละจุด

อนุพันธ์ 
ความชันของฟังก์ชันเชิงเส้น: อนุพันธ์ 

กรณีที่ง่ายที่สุด นอกเหนือจากกรณีของฟังก์ชันคงตัว คือเมื่อ y เป็นฟังก์ชันเชิงเส้นของ x ซึ่งหมายถึงกราฟของ y จะเป็นเส้นตรง ในกรณีนี้ y = f(x) = m x + b สำหรับจำนวนจริง m และ b และความชัน m ซึ่งกำหนดโดยการเปลี่ยนแปลงของ y หารด้วยการเปลี่ยนแปลงของ x ดังสมการ

    อนุพันธ์ 

เมื่อสัญลักษณ์ Δ (เดลตา) แทนคำว่า "การเปลี่ยนแปลง" สูตรนี้เป็นจริง เพราะว่า

    อนุพันธ์ 

เพราะฉะนั้น จะได้

    อนุพันธ์ 

ทำให้ได้

    อนุพันธ์ 

ซึ่ง m เป็นค่าที่ถูกต้องของความชันของเส้นกราฟ ถ้าฟังก์ชัน f ไม่เป็นฟังก์ชันเชิงเส้น (กล่าวคือ กราฟของมันไม่เป็นเส้นตรง) แล้วการเปลี่ยนแปลงของ y หารด้วยการเปลี่ยนแปลงของ x จะมีค่าแตกต่างกันออกไป การหาอนุพันธ์จึงเป็นวิธีการที่จะหาค่าที่ถูกต้องของอัตราการเปลี่ยนแปลงที่ค่าตัวแปรต้น x ใด ๆ

อัตราการเปลี่ยนแปลงที่หาจากค่าลิมิต
รูปที่ 1. เส้นสัมผัสที่ (x, f(x))
รูปที่ 2. เส้นตัดของส่วนโค้ง y= f(x) กำหนดโดยจุด (x, f(x)) และ (x+h, f(x+h))
รูปที่ 3. เส้นสัมผัสคือลิมิตของเส้นตัด
รูปที่ 4. ภาพเคลื่อนไหว: เส้นสัมผัส (อนุพันธ์) ที่หาจากลิมิตของเส้นตัด

แนวคิดนี้ ซึ่งแสดงดังรูปที่ 1 ถึงรูปที่ 3 คือการคำนวณอัตราการเปลี่ยนแปลงจากค่าลิมิตของอัตราส่วนของผลต่าง Δy / Δx เมื่อ Δx เข้าใกล้ค่าที่น้อยมาก

สัญกรณ์

มีสัญกรณ์สำหรับอนุพันธ์สองแบบที่ใช้กันโดยทั่วไป แบบหนึ่งมาจากไลบ์นิซ และอีกแบบหนึ่งมาจากลากรางจ์ อนุพันธ์อีกแบบหนึ่งซึ่งคิดขึ้นโดยนิวตันมีใช้บ้างในสาขาฟิสิกส์

ในสัญกรณ์ของไลบ์นิซ การเปลี่ยนแปลงที่น้อยมากของ x แสดงได้เป็น dx และอนุพันธ์ของ y เทียบกับ x เขียนได้ดังนี้

    อนุพันธ์ 

แสดงถึงอัตราส่วนของปริมาณที่น้อยมากสองปริมาณ (ข้างบนอ่านว่า "อนุพันธ์ของ y เทียบกับ x" หรือ "d y บาย d x" รูปแบบ "d y d x" นี้ใช้กันในการสนทนาอย่างบ่อยครั้ง แต่มันอาจทำให้สับสนได้)

ส่วนสัญกรณ์ของลากรางจ์ อนุพันธ์ของฟังก์ชัน f(x) เทียบกับ x แสดงได้เป็น f'(x) (อ่านว่า "f ไพรม์ของ of x") หรือ fx'(x) (อ่านว่า "f ไพรม์ x ของ x")

และในสัญกรณ์ของนิวตัน อนุพันธ์ของฟังก์ชันเขียนแทนด้วยจุดบนตัวแปรตาม นั่นคือ ถ้า y เป็นฟังก์ชันของ t แล้วอนุพันธ์ของ y เทียบกับ t จะเขียนแทนด้วย อนุพันธ์  ในขณะที่อนุพันธ์อันดับที่สูงขึ้นจะเพิ่มจำนวนจุด เช่น อนุพันธ์  สัญกรณ์นี้นิยมใช้สำหรับตัวแปรตามที่ขึ้นกับเวลา

อัตราส่วนเชิงผลต่างของนิวตัน

อนุพันธ์ 
เส้นตัดเข้าใกล้เส้นสัมผัสเมื่อ อนุพันธ์ 

อนุพันธ์ของฟังก์ชัน f ที่ x ในเชิงเรขาคณิต คือ ความชันของเส้นสัมผัสของกราฟ f ที่ x เราไม่สามารถหาความชันของเส้นสัมผัสจากฟังก์ชันที่กำหนดให้โดยตรงได้ เพราะว่าเรารู้เพียงจุดบนเส้นสัมผัส ซึ่งก็คือ (x, f (x)) เท่านั้น ในทางอื่น เราจะประมาณความชันของเส้นสัมผัสด้วยเส้นตัด (secant line) หลาย ๆ เส้น ที่มีจุดตัดทั้ง 2 จุดอยู่ห่างกันเป็นระยะทางสั้น ๆ เมื่อหาลิมิตของความชันของเส้นตัดที่จุดตัดอยู่ใกล้กันมาก ๆ เราจะได้ความชันของเส้นสัมผัส ดังนั้น อาจนิยามอนุพันธ์ว่าคือ ลิมิตของความชันของเส้นตัดที่เข้าใกล้เส้นสัมผัส

เพื่อหาความชันของเส้นตัดที่จุดตัดอยู่ใกล้กันมาก ๆ ให้ h เป็นจำนวนที่มีค่าน้อย ๆ h จะแทนการเปลี่ยนแปลงน้อย ๆ ใน x ซึ่งจะเป็นจำนวนบวกหรือลบก็ได้ ดังนั้น ความชันของเส้นที่ลากผ่านจุด (x,f (x) ) และ (x+h,f (x+h) ) คือ

    อนุพันธ์ 

ซึ่งนิพจน์นี้ก็คือ อัตราส่วนเชิงผลต่างของนิวตัน (Newton's difference quotient) อนุพันธ์ของ f ที่ x คือ ลิมิตของค่าของผลหารเชิงผลต่าง ของเส้นตัดที่เข้าใกล้กันมาก ๆ จนเป็นเส้นสัมผัส:

    อนุพันธ์ 

ตัวอย่าง

อนุพันธ์ 
ฟังก์ชันกำลังสอง

ฟังก์ชันกำลังสอง f(x) = x2 หาอนุพันธ์ได้ที่ x = 3 และอนุพันธ์ของมันที่ตำแหน่งนั้นเท่ากับ 6 ผลลัพธ์นี้มาจากการคำนวณลิมิตของอัตราส่วนของผลต่างของ f(3) เมื่อ h เข้าใกล้ศูนย์:

    อนุพันธ์ 

นิพจน์สุดท้ายแสดงให้เห็นว่าอัตราส่วนของผลต่างเท่ากับ 6 + h เมื่อ h ≠ 0 และไม่นิยามเมื่อ h = 0 เนื่องจากนิยามของอัตราส่วนของผลต่าง อย่างไรก็ตาม นิยามของลิมิตกล่าวว่าอัตราส่วนของผลต่างไม่จำเป็นต้องนิยามเมื่อ h = 0 ลิมิตก็คือผลลัพธ์จากการให้ h เข้าสู่ศูนย์ ซึ่งหมายถึงแนวโน้มของค่า 6 + h เมื่อ h มีค่าน้อยลงมาก ๆ

    อนุพันธ์ 

ดังนั้น ความชันของกราฟของฟังก์ชันกำลังสองที่จุด (3, 9) คือ 6 และอนุพันธ์ของมันที่ x = 3 คือ f′(3) = 6

ต่อไปนี้เป็นการคำนวณในทำนองเดียวกันในกรณีทั่วไป ซึ่งแสดงให้เห็นว่าอนุพันธ์ของฟังก์ชันกำลังสองที่ x = a คือ f′(a) = 2a:

    อนุพันธ์ 

ความต่อเนื่องและการหาอนุพันธ์ได้

ถ้า f เป็นฟังก์ชันที่หาอนุพันธ์ ณ a ได้ f จะต้องต่อเนื่องที่ a เสมอ ถ้า f ไม่ต่อเนื่องที่ a จะหาอนุพันธ์ไม่ได้ ตัวอย่างเช่น เลือกจุด a และให้ f เป็นฟังก์ชันขั้นบันไดที่มีค่า 1 สำหรับ x ทั้งหมดที่น้อยกว่า a และมีค่า 10 สำหรับ x ทั้งหมดที่มากกว่าหรือเท่ากับ a แล้ว f ไม่สามารถมีอนุพันธ์ได้ที่ a โดยหาก h เป็นค่าลบ a + h จะอยู่ที่ส่วนล่างของขั้นบันได ดังนั้นเส้นตัดจาก a ถึง a + h นั้นสูงชันมากและเมื่อ h มีแนวโน้มเป็นศูนย์ความชันจะไม่มีที่สิ้นสุด หาก h เป็นค่าบวก a + h จะอยู่บนส่วนสูงของขั้นบันได ดังนั้นเส้นตัดจาก a ถึง a + h มีความชันเป็นศูนย์ ดังนั้นเส้นตัดจึงไม่ได้เข้าใกล้ความชันเดียว และลิมิตของอัตราส่วนของผลต่างจึงไม่สามารถหาได้

อย่างไรก็ตาม ถึงแม้ว่าฟังก์ชันจะต่อเนื่อง ณ จุดหนึ่ง ก็ยังอาจไม่สามารถหาอนุพันธ์ได้ ตัวอย่างเช่นฟังก์ชันค่าสัมบูรณ์ f(x) = |x| ต่อเนื่องที่ x = 0 แต่ไม่สามารถหาอนุพันธ์ได้ หาก h เป็นค่าบวกความชันของเส้นตัดจาก 0 ถึง h จะเท่ากับ 1 ในขณะที่ถ้า h เป็นลบความชันของเส้นตัดจาก 0 ถึง h จะเป็น -1 จุดที่หาอนุพันธ์ไม่ได้นี้สามารถเห็นได้ชัดเจนว่าเป็นมุมในกราฟที่ x = 0 แต่แม้ฟังก์ชันที่กราฟไม่หักมุมก็ยังอาจจะไม่สามารถหาอนุพันธ์ได้ ณ จุดที่ความชันเป็นแนวตั้ง: ตัวอย่างเช่นฟังก์ชันที่กำหนดโดย f(x) = x1/3 ไม่สามารถหาอนุพันธ์ได้ที่ x = 0

สรุปว่า ฟังก์ชันที่มีอนุพันธ์นั้นต่อเนื่อง แต่มีฟังก์ชันต่อเนื่องที่ไม่มีอนุพันธ์

ฟังก์ชันส่วนใหญ่ที่พบในทางปฏิบัติมีอนุพันธ์ทุกจุดหรือเกือบทุกจุด เพราะเหตุนี้ ในช่วงแรกของประวัติศาสตร์ของแคลคูลัส นักคณิตศาสตร์หลายคนสันนิษฐานว่าฟังก์ชันต่อเนื่องมีอนุพันธ์ที่จุดส่วนใหญ่ ซึ่งภายใต้เงื่อนไขที่ไม่รุนแรงมาก เช่นถ้าฟังก์ชันเป็นฟังก์ชันโมโนโทนหรือฟังก์ชันลิปชิตส์ สิ่งนี้จะเป็นจริง อย่างไรก็ตามในปี 1872 ไวเออร์ชตราส พบตัวอย่างแรกของฟังก์ชันที่ต่อเนื่องได้ทุกที่ แต่ไม่สามารถหาอนุพันธ์ได้ที่ไหน ตัวอย่างนี้เรียกว่าฟังก์ชันไวเออร์ชตราส ในปี 1931 สเตฟาน บานาค พิสูจน์ว่าเซตของฟังก์ชันที่มีอนุพันธ์ในบางจุดเป็นเพียงส่วนเล็ก ๆ ของฟังก์ชันต่อเนื่องทั้งหมด หมายความว่าการสุ่มฟังก์ชันต่อเนื่องใด ๆ แทบไม่มีโอกาสเลยที่จะหาอนุพันธ์ได้แม้จุดเดียว

อนุพันธ์ในฐานะฟังก์ชัน

ถ้าฟังก์ชัน f สามารถหาค่าอนุพันธ์ได้ในทุกจุดในโดเมนของมัน เราสามารถนิยามฟังก์ชันที่พาค่า x ทุกค่าในโดเมนนั้นไปหาค่าของอนุพันธ์ของ f ที่ x ได้ ฟังก์ชันนี้เขียนแทนด้วย f' และเรียกว่า ฟังก์ชันอนุพันธ์ ของ f

ในกรณีที่ f ไม่สามารถหาอนุพันธ์ได้ครบทุกจุดในโดเมน ฟังก์ชันที่มีค่าเท่ากับอนุพันธ์นี้สำหรับจุดที่หาได้ และไม่นิยามสำหรับจุดอื่น ๆ ก็สามารถเรียกว่าอนุพันธ์ของ f ได้เช่นกัน ซึ่งอนุพันธ์นี้ยังคงเป็นฟีงก์ชัน แต่มีโดเมนเล็กกว่า f

จากมุมมองนี้ เราสามารถมองการหาอนุพันธ์เป็นฟังก์ชันของฟังก์ชัน นั่นคือ อนุพันธ์เป็นตัวดำเนินการที่มีโดเมนเป็นเซตของฟังก์ชันทุกฟังก์ชันที่หาอนุพันธ์ได้ทุกจุดบนโดเมนของตัวมันเอง และมีเรนจ์เป็นเซตของฟังก์ชัน หากเราแทนตัวดำเนินการนี้ด้วย D แล้วจะได้ D(f) = f' เนื่องจาก D(f) เป็นฟังก์ชัน สามารถหาค่าที่จด a ใด ๆ ได้ว่า D(f)(a) = f'(a)

อนุพันธ์ 
แสดงความชันในแต่ละจุดของฟังก์ชัน อนุพันธ์  ซึ่งจะสังเกตเห็นได้ว่าเส้นที่แสดงความชันที่จุดใดๆจะสัมผัส (tangent) กับกราฟของฟังก์ชันที่จุดนั้นๆ ความชันในที่นี้ก็คืออนุพันธ์ของฟังก์ชันนั้นเอง หมายเหตุ สีเขียว คือ ความชันเป็นบวก สีแดง คือ ความชันเป็นลบ สีดำ คือ ความชันเป็นศูนย์

อนุพันธ์อันดับสูง

หาก f เป็นฟังก์ชันที่หาอนุพันธ์ได้ โดย f' เป็นอนุพันธ์ของ f แล้วอนุพันธ์ของ f' อีกทีหนึ่ง (ถ้าอนุพันธ์นี้หาได้) เขียนแทนด้วย f'' และเรียกว่า อนุพันธ์อันดับสอง ของ f ในทำนองเดียวกัน อนุพันธ์ของ f'' (ถ้าหาได้) เขียนแทนด้วย f''' และเรียกว่า อนุพันธ์อันดับสาม ของ f เมื่อทำเช่นนี้ซ้ำไปเรื่อย ๆ เราก็จะได้นิยามของ อนุพันธ์อันดับที่ n ว่าเป็นอนุพันธ์ของอนุพันธ์อันดับที่ n - 1 อนุพันธ์อันดับตั้งแต่สองขึ้นไปนี้โดยรวมเรียกว่า อนุพันธ์อันดับสูง (อังกฤษ: higher-order derivatives)

อนุพันธ์อันดับสูงมีนัยสำคัญในวิชาฟิสิกส์ กล่าวคือ ถ้า x(t) แสดงตำแหน่งของวัตถุที่เวลา t แล้วอนุพันธ์อันดับหนึ่งของ x แสดงความเร็วของวัตถุ และอันดับสองแสดงความเร่ง

ฟังก์ชันที่มีอนุพันธ์ไม่จำเป็นต้องมีอนุพันธ์อันดับสูงกว่านั้น เช่น หาก

อนุพันธ์ 

แล้วจะสามารถพิสูจน์ได้ว่า f หาอนุพันธ์ได้เท่ากับ

อนุพันธ์ 

เท่ากับสองเท่าของฟังก์ชันค่าสัมบูรณ์ ซึ่งไม่มีอนุพันธ์ที่ x = 0 ดังนั้น f ไม่มีอนุพันธ์อันดับสองที่ค่า x นี้

ในทำนองเดียวกัน ฟังก์ชันสามารถมีอนุพันธ์ขึ้นไปถึงอันดับที่ k แต่ไม่มีอนุพันธ์อันดับที่ k + 1 ซึ่งเรียกว่าฟังก์ชันที่หาอนุพันธ์ได้ k ครั้ง และถ้าอนุพันธ์อันดับที่ k นี้ต่อเนื่องด้วย จะเรียกฟังก์ชันนั้นว่าอยู่ในคลาส Ck ฟังก์์ชันที่หาอนุพันธ์ได้เรื่อย ๆ โดยไม่จำกัดครั้งเรียกว่า ฟังก์ชันปรับเรียบ (อังกฤษ: smooth function)

ฟังก์ชันพหุนามทุกฟังก์ชันสามารถหาอนุพันธ์ได้ไม่จำกัดครั้ง โดยถ้าพหุนามดีกรี n ถูกหาอนุพันธ์ n ครั้งจะได้ฟังก์ชันค่าคงที่เสมอ และอนุพันธ์อันดับถัดจากนั้นก็จะเป็นศูนย์ทุกอันดับ ดังนั้นฟังก์ชันพหุนามทุกฟังก์ชันเป็นฟังก์ชันปรับเรียบ

จุดเปลี่ยนเว้า

จุดที่อนุพันธ์อันดับสองของฟังก์ชันเปลี่ยนเครื่องหมาย (จากจำนวนจริงลบเป็นจำนวนจริงบวก หรือในทางกลับกัน) เรียกว่า จุดเปลี่ยนเว้า ที่จุดเปลี่ยนเว้า อนุพันธ์อันดับสองอาจเป็นศูนย์ ดังในกรณีที่จุดเปลี่ยนเว้าที่ x = 0 ของฟังก์ชัน y = x3 หรืออนุพันธ์อันดับสองอาจหาค่าไม่ได้ ดังในกรณีที่จุดเปลี่ยนเว้าที่ x = 0 ของฟังก์ชัน y = x1/3 ฟังก์ชันจะเปลี่ยนจากฟังก์ชันเว้าไปเป็นฟังก์ชันนูนหรือในทางกลับกันที่จุดเปลี่ยนเว้า

รายละเอียดสัญกรณ์

สัญกรณ์ของไลบ์นิซ

สัญลักษณ์ dx, dy และ dx/dy เสนอโดยกอทท์ฟรีด วิลเฮล์ม ไลบ์นิซ ใน ค.ศ. 1675 สัญลักษณ์นี้ใช้กันอย่างทั่วไปเมื่อสมการ y = f(x) ซึ่งแสดงถึงความสัมพันธ์เชิงฟังก์ชันระหว่างตัวแปรต้นและตัวแปรตาม อนุพันธ์อันดับหนึ่งเขียนได้ดังนี้

    อนุพันธ์ 

อนุพันธ์อันดับสูงจะแสดงโดยใช้สัญลักษณ์

    อนุพันธ์ 

สำหรับอนุพันธ์อันดับที่ n ของ y = f(x) (เทียบกับ x) ข้างบนเป็นสัญลักษณ์ย่อของการใช้ตัวดำเนินการอนุพันธ์หลายตัว ยกตัวอย่างเช่น

    อนุพันธ์ 

ในสัญกรณ์ของไลบ์นิซ เราสามารถเขียนอนุพันธ์ของ y ที่จุด x = a ในรูปที่แตกต่างกันสองแบบ:

    อนุพันธ์ 

สัญกรณ์ของไลบ์นิซช่วยให้สามารถระบุตัวแปรในการหาอนุพันธ์ได้ (ในตัวส่วน) โดยเฉพาะในเรื่องการหาอนุพันธ์ย่อย และยังทำให้ง่ายต่อการจำกฎลูกโซ่อีกด้วย:

    อนุพันธ์ 

สัญกรณ์ของลากรางจ์

ในบางครั้งเราเรียกว่า สัญกรณ์ไพรม์ หนึ่งในสัญกรณ์ยุคใหม่ที่ใช้กันมากที่สุดสำหรับการหาอนุพันธ์ ซึ่งมาจากโฌแซ็ฟ-หลุยส์ ลากร็องฌ์ โดยใช้เครื่องหมายไพรม์ กล่าวคือ อนุพันธ์ของฟังก์ชัน f(x) เขียนได้ในรูป f′(x) หรือ f′ ในทำนองเดียวกันอนุพันธ์อันดับสองและสามก็เขียนได้ในรูปดังนี้

    อนุพันธ์    และ   อนุพันธ์ 

เพื่อที่จะเขียนอนุพันธ์อันดับที่สูงกว่านี้ ผู้เขียนบางคนก็จะใช้เลขโรมันเป็นตัวยก หรือบางคนอาจใช้จำนวนนับในวงเล็บ:

    อนุพันธ์    หรือ   อนุพันธ์ 

สัญกรณ์ด้านหลัง ถ้าอยู่ในรูปทั่วไปก็คือ f (n) สำหรับอนุพันธ์อันดับ n ของ f สัญกรณ์นี้มีประโยชน์มากที่สุดเมื่อเราต้องการจะกล่าวถึงอนุพันธ์ในอยู่ในรูปฟังก์ชันของมันเอง ดังเช่นในกรณีนี้ สัญกรณ์ไลบ์นิซอาจกลายเป็นเรื่องยุ่งยาก

สัญกรณ์ของนิวตัน

สัญกรณ์ของนิวตันสำหรับการหาอนุพันธ์ เรียกได้อีกอย่างหนึ่งว่าสัญกรณ์จุด โดยการเขียนไว้เหนือชื่อฟังก์ชันเพื่อแทนจำนวนครั้งของอนุพันธ์ ถ้า y = f(t) แล้ว

    อนุพันธ์    และ   อนุพันธ์ 

หมายถึง อนุพันธ์อันดับหนึ่งและสองของ y เทียบกับ t ตามลำดับ สัญกรณ์นี้นำไปใช้อย่างเฉพาะทางอย่างเช่น อนุพันธ์เทียบกับเวลา หรือเทียบกับความยาวส่วนโค้ง ซึ่งใช้กันทั่วไปในฟิสิกส์ สมการเชิงอนุพันธ์ และเรขาคณิตเชิงอนุพันธ์ โดยสัญกรณ์นี้ไม่สามารถที่จะเขียนได้เมื่ออนุพันธ์มีอันดับที่สูงขึ้น ในทางปฏฺบัติ จะใช้เพียงอนุพันธ์ไม่กี่อันดับที่จำเป็นเท่านั้น

สัญกรณ์ของออยเลอร์

สัญกรณ์ของออยเลอร์จะใช้ตัวดำเนินการเชิงอนุพันธ์ D ซึ่งจะใช้กับฟังก์ชัน f เพื่อที่จะได้อนุพันธ์อันดับหนึ่ง Df ส่วนอนุพันธ์อันดับสองเขียนได้ในรูป D2f และอนุพันธ์อันดับ n เขียนได้ในรูป Dnf

ถ้า y = f(x) เป็นตัวแปรตาม แล้ว x จะเป็นตัวห้อยอยู่ใต้ D เพื่อบ่งบอกว่ากำลังเทียบกับตัวแปรต้น x ดังข้างล่าง

    อนุพันธ์    หรือ อนุพันธ์ ,

แต่ตัวห้อย x มักจะถูกละไว้ในฐานที่เข้าใจเพื่อความรวดเร็ว เมื่อมีตัวแปรต้นนี้อยู่ตัวเดียว

สัญกรณ์ของออยเลอร์มีประโยชน์ในการแก้สมการเชิงอนุพันธ์เชิงเส้น

กฎการคำนวณ

กฎสำหรับฟังก์ชันพื้นฐาน

    อนุพันธ์ 

เมื่อ r เป็นจำนวนจริงใด ๆ แล้ว

    อนุพันธ์ 

เมื่อไรก็ตามที่ฟังก์ชันนี้สามารถหาค่าได้ ตัวอย่างเช่น ถ้า อนุพันธ์  แล้ว

    อนุพันธ์ 

และฟังก์ชันอนุพันธ์สามารถหาค่าได้เฉพาะสำหรับค่า x ที่เป็นบวก ไม่ใช่ x = 0 เมื่อ r = 0 กฎนี้จะให้ค่า f′(x) เป็นศูนย์สำหรับ x ≠ 0 ซึ่งกรณีนี้ก็คือกฎค่าคงที่

  • กฎค่าคงที่: ถ้า f(x) คือค่าคงที่ แล้ว
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 

จากกฎผลคูณและกฎผลหารทำให้ได้

    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 
    อนุพันธ์ 

กฎสำหรับฟังก์ชันหลายฟังก์ชันรวมกัน

ในหลายกรณี การใช้วิธีอัตราส่วนเชิงผลต่างของนิวตันแบบตรง ๆ จะทำให้การคำนวณลิมิตยุ่งยากได้ ซึ่งหลีกเลี่ยงโดยการใช้กฎการหาอนุพันธ์เหล่านี้

  • กฎผลรวม:
    อนุพันธ์  สำหรับฟังก์ชันทั้งหมด f และ g และจำนวนจริงทั้งหมด อนุพันธ์  และ อนุพันธ์ 
    อนุพันธ์  สำหรับฟังก์ชันทั้งหมด f และ g ในกรณีพิเศษ กฎนี้รวมถึงข้อเท็จจริงที่ว่า อนุพันธ์  เมื่อไรก็ตามที่ อนุพันธ์  เป็นค่าคงที่ เพราะว่า อนุพันธ์  จากกฎค่าคงที่
    อนุพันธ์  สำหรับฟังก์ชันทั้งหมด f และ g ของตัวแปรต้นทั้งหมดโดยที่ g ≠ 0.
    อนุพันธ์ 

ตัวอย่างการคำนวณ

อนุพันธ์ของ

    อนุพันธ์ 

คือ

    อนุพันธ์ 

ในพจน์ที่สองของ f คำนวณโดยใช้กฎลูกโซ่ และพจน์ที่สามใช้กฎผลคูณ นอกจากนี้ยังใช้กฎการหาอนุพันธ์สำหรับฟังก์ชันพื้นฐาน ได้แก่ x2, x4, sin(x), ln(x) และ exp(x) = ex รวมถึงค่าคงที่ 7 ในพจน์สุดท้าย

ทั่วไป

ดูเพิ่ม

หมายเหตุ

อ้างอิง

แหล่งข้อมูลอื่น

Tags:

อนุพันธ์ การหาและอนุพันธ์ ในฐานะฟังก์ชันอนุพันธ์ อันดับสูงอนุพันธ์ รายละเอียดสัญกรณ์อนุพันธ์ กฎการคำนวณอนุพันธ์ ทั่วไปอนุพันธ์ ดูเพิ่มอนุพันธ์ หมายเหตุอนุพันธ์ อ้างอิงอนุพันธ์ แหล่งข้อมูลอื่นอนุพันธ์คณิตศาสตร์ความเร็วภาษาอังกฤษแคลคูลัส

🔥 Trending searches on Wiki ไทย:

รายชื่อสถาบันอุดมศึกษาในกรุงเทพมหานครพิชิตรัก พิทักษ์โลกรัฐฉานมาสค์ไรเดอร์ซีรีส์ประวัติศาสตร์ทะเลทรายสะฮารารัสมุส ฮอยลุนด์รายชื่อละครโทรทัศน์ทางช่อง 3 เอชดี (พ.ศ. 2560–2567)พระศิวะข้าราชการพลเรือนสามัญโฟร์อีฟมหาวิทยาลัยรังสิตหมานิวรณ์จังหวัดชุมพรธนาคารทหารไทยธนชาตสโมสรฟุตบอลลิเวอร์พูลตำนานสมเด็จพระนเรศวรมหาราชอมีนา พินิจพระเจ้าบุเรงนองสโมสรฟุตบอลเชฟฟีลด์ยูไนเต็ดตัวเลขโรมันธนัท ฉิมท้วมปาณัสม์ กิตติภาณุวงศ์ภัทร เอกแสงกุลสุจาริณี วิวัชรวงศ์ประเทศอินเดียรายชื่อโรงเรียนในจังหวัดเชียงใหม่หีประเทศอิตาลีรายพระนามและชื่อผู้บัญชาการทหารบกไทยเคลียร์สกีบีดีทอยเล็ตท่าอากาศยานดอนเมืองธนนท์ จำเริญดวงใจเทวพรหม (ละครโทรทัศน์)พรหมลิขิตกรรชัย กำเนิดพลอยปุญญ์ปรีดี คุ้มพร้อม รอดสวาสดิ์เสกสรรค์ ศุขพิมายพิจักขณา วงศารัตนศิลป์ช่องวัน 31ฟุตบอลชิงแชมป์แห่งชาติยุโรป 2024สังโยชน์ฮันเตอร์ x ฮันเตอร์ท่าอากาศยานสุวรรณภูมิพัชรวาท วงษ์สุวรรณพิมพ์ชนก ลือวิเศษไพบูลย์คณาวุฒิ ไตรพิพัฒนพงษ์ภาคตะวันออก (ประเทศไทย)อรรถกร ศิริลัทธยากรจังหวัดตราดจรินทร์พร จุนเกียรติสมเด็จพระเจ้าบรมวงศ์เธอ เจ้าฟ้าบริพัตรสุขุมพันธุ์ กรมพระนครสวรรค์วรพินิตไฮบ์คอร์ปอเรชันพระไตรปิฎกอินเทอร์เน็ตอัญรินทร์ ธีราธนันพัฒน์มิลลิ (แร็ปเปอร์)โรงพยาบาลในประเทศไทยกรมการปกครองสโมสรฟุตบอลเอฟเวอร์ตันมังกี้ ดี. ลูฟี่งูกะปะยูฟ่ายูโรปาลีกก็อตซิลลาณฐพร เตมีรักษ์อินสตาแกรมดาวิกา โฮร์เน่กบฏเจ้าอนุวงศ์รายชื่อสถานีรถไฟ สายใต้จิรายุ ตั้งศรีสุขบางกอกอารีนาธี่หยด 2เปป กวาร์ดิโอลาสำนักงานคณะกรรมการการศึกษาขั้นพื้นฐานยากูซ่า🡆 More