Sphere.jpg

Tha a' chruinne na nì a tha cruthte mar ball. Ann an matamataic, tha a' chruinne quadric bac.Anns an àbhaist neo-mhatamataigeach tha a' chruinne air a lìonadh.

Nas cunntasaiche, 's e seat dhen puing ann am fànas Euclidean 3-thomaid a th' ann ann an cruinne, agus tha astar r bhon a' phuing bunaiteach nam fànas sin.

Ann an cruinneadaireachd cho-òrdanaich, tha a' chruinne aig a bheil buillsgean aig:(x0y0z0) agus radius r seat dhen puingean uile (x,y,z) mar seo:

    (x - x0)2 + (y - y0)2 + (z - z0)2 = r2

'S urrainn dhuinn na puingean a sgrìobhadh air a' chruinne le radius r agus buillsgean air a' bhun thaobh:

    x = r cos(φ) sin(θ)
    y = r sin(φ) sin(θ)       (0 ≤ θ < π agus -π < φ ≤ π)
    z = r cos(θ)

(faic foincseanan triantanach agus co-òrdanaich cruinn).

'S urrainn dhuinn cunntas a chur air cruinne le radius sam bith a tha air a shocrachadh air a' bhun mar a leanas dèanamh diofarail :

Tha farsaingeachd uachdar na cruinne le radius r air a thoirt le 4πr2, agus tha a tomad air a thoirt le 4πr3/3.

This article uses material from the Wikipedia article Cruinne, which is released under the Creative Commons Attribution-ShareAlike 3.0 license ("CC BY-SA 3.0"); additional terms may apply. (view authors). Tha an t-susbaint seo ri fhaighinn fo CC BY-SA 3.0 mur eil an caochladh 'ga innse. Images, videos and audio are available under their respective licenses.
#Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc. Wiki (duhoctrungquoc.vn) is an independent company and has no affiliation with Wikimedia Foundation.