Električni Naboj

Naelektrisanje (električni naboj ili količina elektriciteta, oznaka Q) je osnovno svojstvo subatomskih čestica, kojim se odlikuju elektromagnetne interakcije.

Naelektrisana tvar stvara elektromagnetno polje. Naelektrisanje je uzrok, a takođe podleže dejstvu elektromagnetnih polja. Međudejstvo naelektrisanja i polja je uzrok elektromagnetne sile koja predstavlja jednu od četiri osnovne sile u prirodi.

Električni Naboj
Vrste interakcije (privlačenje ili odbijanje), ovisno o naelektrisanju čestica.
Elektromagnetizam
Električni Naboj
Ključne stavke
Elektricitet  Magnetizam
Elektrostatika
Magnetostatika
Elektrodinamika

Vakuum  Lorentzova sila  EMS  Elektromagnetska indukcija  Faradayjev zakon  Lenzov zakon  Struja pomaka  Maxwellove jednačine  EM polje  Elektromagnetna radijacija  Liénard-Wiechertov potencijal  Maxwellov tenzor  Vrtložne struje

Električna mreža
Kovarijantna formulacija

Elektromagnetni tenzor  EM tenzor napon-energija  Četiri-tok  Elektromagnetni četiri-potencijal

Ova kutijica: pogledaj  razgovor  uredi

Postoje dve vrste naelektrisanja, pozitivno i negativno, a obeležavaju se znacima plus (+) i minus (-). Različita naelektrisanja se privlače, a ista odbijaju.

Naelektrisanje se nekada smatralo neprekidnom i beskonačno deljivom osobinom. Danas je poznato da postoji najmanja količina naelektrisanja. Ona se vezuje za elementarno naelektrisanje elektrona. Svako naelektrisano telo u prirodi ima višak ili manjak elektrona. Stoga se kaže da je količina naelektrisanja konačan skup elementarnih količina elektriciteta.

Količina naboja Q u nekom provodniku jednaka je umnošku naboja elektrona e i broja tih elektrona N, odnosno

U hidrauličnoj analogiji, ekvivalent količini elektriciteta je količina vode.

Objašnjenje

Naelektrisanje je svojstvo subatomskih čestica i u prirodi se javlja samo kao celobrojni umnožak elementarnog naelektrisanja. Zato se kaže da je naelektrisanje diskretno odnosno kvantovano. Kada se izražava kao umnožak elementarnog naelektrisanja, elektron ima naelektrisanje -1 a proton naelektrisanje +1. Kvark, zavisno od vrste, može da ima naelektrisanje −1/3 ili +2/3. Antičestice imaju naelektrisanja suprotna od odgovarajućih čestica (pozitron +1, antiproton -1). Postoje i druge naelektrisane čestice (tau, mion...).

Nalektrisanje makroskopskog tela je zbir naelektrisanja svih čestica od kojih je telo sastavljeno. Često, ukupno nalektrisanje je jednako nuli, pošto je broj elektrona u svakom atomu jednak broju protona, pa se njihova naelektrisanja poništavaju. Pojava u kojoj ukupno naelektrisanje nije jednako nuli, i pritom su ta naelektrisanja nepokretna i njihova količina se ne menja u vremenu, naziva se statički elektricitet. Dalje, čak i kada je zbir naelektrisanja jednak nuli, pozitivna i negativna nelektrisanja ne moraju biti ravnomerno raspoređena unutar tela (na primer pod uticajem spoljnjeg električnog polja), i onda se za materijal kaže da je polarizovan, a naelektrisanje koje nastaje usled polarizacije naziva se vezano naelektrisanje (dok se dodatno naelektrisanje doneto spolja u telo nnaziva slobodno naelektrisanje). Uređeno kretanje naelektrisanih čestica u određenom smeru naziva se električna struja.

Strogo, količina naelektrisanja mora biti umnožak elementarnog naelektrisanja e (naelektrisanje je kvantovano). Ali, pošto je količina naelektrisanja prosečna, makroskopska veličina, mnogo redova veličine veća od elementarnog naelektrisanja, efektivno može imati bilo koju realnu vrednost.

Jedinice

SI jedinica naelektrisanja naziva se kulon i označava se sa C. Kulon je izveden kao količina naelektrisanja koja prolazi kroz poprečni presek električnog provodnika noseći jedan amper u sekundi. Količina naelektrisanja u 1 elektronu (elementrarno naelektrisanje) je aproksimativno 1,6×10−19 C, a 1 kulon korespondira količini naelektrisanja od oko 6,24×1018 elektrona. Količina električnog naboja se može direktno meriti pomoću elektrometra, ili indirektno pomoću galvanometra.

U modernoj praksi, fraza „količina naelektrisanja” se koristi umesto „kvantitet naelektrisanja”.

Nakon utvrđivanja kvantizovanog karaktera naelektrisanja, 1891. godine Džordž Stoni je predložio jedinicu 'elektron' za ovu fundamentalnu jedinicu električnog naelektrisanja. To je bilo pre nego što je česticu otkrio Džozef Tomson 1897. godine. Ova jedinica se u današnje vreme tretira kao bezimena, te se naziva elementarnim naelektrisanjem, fundamentalnom jedinicom naelektirsanja, ili jednostavno e. Mera naelektirsanja je umnožak elementarnog naelektrisanja e, iako se čini da se velika naelektirsanja ponašaju kao realni kvantiteti. U pojedinim kontekstima je smisledno da se govori o frakcijama naelektirsanja; na primer pri naelektrisavanju kondenzatora, ili u opisu frakcionog kvantnog Holovog efekta.

Jedinica faradej se ponekad koristi u elektrohemiji. Jedan faradej naelektrisanja je magnituda naelektrisanja jednog mola elektrona, i.e. 96485.33289(59) C.

U sistemima jedinica izvan SI, kao što je cgs, električno naelektrisanje se izražava kao kombinacija samo tri fundamentalna kvantiteta (dužine, mase, i vremena), a ne četiri, kao u SI, gde je električno naelektirsanje kombinacija dužine, mase, vremena, i električne struje.

Istorija

    Vidi takođe: Istorija elektromagnetne teorije i Elektricitet
Električni Naboj 
Kulonova torziona vaga

Od davnina su ljudi poznavali četiri tipa pojava, sve od kojih bi se danas mogli objasniti upotrebom koncepta električnog naboja: (a) munje, (b) električna raža, (c) vatra svetog Elma i (d) da trljanje ćilibara krznom dovodi do privlačenja malih, lakih predmete. Prvi opis efekta ćilibara često se pripisuje drevnom grčkom matematičaru Talesu iz Mileta, koji je živeo od c. 624 – c. 546 godine pre nove ere, mada postoje sumnje da li je Tales ostavio bilo kakve spise; njegov izveštaj o ćilibaru poznat je iz jednog zapisa iz ranih 200-ih. Ovaj zapis se može uzeti kao dokaz da je pojava bila poznata još od oko 600. godine pne, mada je Tales objasnio ovaj fenomen kao dokaz da neživi predmeti imaju dušu. Drugim rečima, nije bilo indikacije o postojanju bilo kakvog razumevanja koncepta električnog naboja. Generalno, stari Grci nisu razumeli povezanost između ove četiri vrste pojava. Grci su primetili da naelektrisana ćilibarska dugmad mogu privući lagane predmete poput kose. Takođe su otkrili da ako dovoljno dugo trljaju jantar, mogu čak uzrokovati da i električna iskra skoči, mada postoje i tvrdnje da se električne iskre ne spominju do kraja 17. veka. Ovo svojstvo proizilazi iz triboelektričnog efekta. Krajem 1100-ih, primećeno je da supstanca gagat, zbijeni oblik uglja ispoljava ćilibarski efekat, a sredinom 1500-ih Đirolamo Frakastoro je otkrio da i dijamant pokazuje ovo dejstvo. Izvesne napore su uložili Frakastoro i drugi, a posebno Đirolamo Kardano, da se razvije objašnjenja ovog fenomena.

Za razliku od astronomije, mehanike i optike, koja su kvantitativno proučavane još od antike, početak sadašnjih kvalitativnih i kvantitativnih istraživanja električnih pojava može se obeležiti objavljivanjem dela De Magnete od strane engleskog naučnika Vilijama Gilberta 1600. godine. U ovoj knjizi nalazio se mali odeljak gde se Gilbert vratio efektu ćilibara (kako ga je nazvao) u adresiranju mnogih ranijih teorija, i skovao novolatinsku reč electrica (od ἤλεκτρον (elektron), grčke reči za ćilibar). Latinska reč je prevedena na engleski jezik kao electrics. Gilbert je takođe zaslužan za termin električni, dok je izraz za električnu energiju došao kasnije, pri čemu se prva upotreba pripisuje ser Tomasu Braunu u njegovom delu Pseudodoxia Epidemica iz 1646. godine. (Za dodatne jezičke detalje pogledajte etimologiju električne energije.) Gilbert je hipotetisao da se ovaj efekt ćilibara može objasniti efluvijumom (malim tokom čestica koje teku iz električnog objekta, bez umanjivanja njegove mase ili težine) koji deluje na druge objekte. Ova ideja materijalnog električnog efluvijuma bila je uticajna u 17. i 18. veku. Ona je bila preteča ideja razvijenih u 18. veku o „električnom fluidu” (Dufaj, Nolet, Franklin) i „električnom naboju”.

Osobine

Količina naelektrisanja je relativistički invarijantna. To znači da naelektrisanje čestice q, ostaje konstantno bez obzira koliko se brzo čestica kreće. Ova osobina je i eksperimentalno potvrđena. Pokazano je da je naelektrisanje jednog jezgra helijuma (dva protona i dva neutrona) koje se kreće velikom brzinom isto kao i naelektrisanje dva jezgra deuterijuma (jedan proton i jedan neutron) koja se kreću mnogo sporije nego jezgro helijuma.

Zakon održanja naelektrisanja

Ukupna količina naelektrisanja izolovanog sistema ostaje konstantna nezavisno od promena u samom sistemu. Ovaj zakon je nasledan za sve procese poznate u fizici. U opštem slučaju, ukupna promena u vremenu gustine naelektrisanja Električni Naboj  unutar neke zapremine Električni Naboj  jednaka je površinskom integralu gustine struje kroz površinu Električni Naboj  te zapremine, što je dalje jednako struji Električni Naboj :

    Električni Naboj 

Odnosno da bi unutar neke zapremine Električni Naboj  došlo do promene ukupne količine naelektrisanja (a samim tim i promene gustine naelektrisanja Električni Naboj ), određena količina naelektrisanja mora da uđe u tu zapreminu, ili da izađe iz nje. Prolaskom tih naelektrisanja kroz površinu Električni Naboj  te zapremine, dobija se struja Električni Naboj . Ukoliko ista količina naelektrisanja uđe i izađe iz zapremine, onda imamo dve struje tih naelektrisanja kroz površinu Električni Naboj , +Električni Naboj  i -Električni Naboj . Zbir ove dve struje je 0, pa je i ukupna promena naelektrisanja u zapremini Električni Naboj  jednaka nuli. Iz ovoga se vidi da je prvi Kirhofov zakon specijalni slučaj zakona o održanju količine naelektrisanja.

Literatura

  • Jovan Surutka, Osnovi elektrotehnike, Prvi deo, Elektrostatika, III izdanje, Naučna knjiga, Beograd, 1980, s1-3

Izvori

Vidi još

Spoljašnje veze

Tags:

Električni Naboj ObjašnjenjeElektrični Naboj JediniceElektrični Naboj IstorijaElektrični Naboj OsobineElektrični Naboj Zakon održanja naelektrisanjaElektrični Naboj LiteraturaElektrični Naboj IzvoriElektrični Naboj Vidi jošElektrični Naboj Spoljašnje vezeElektrični NabojElektromagnetna interakcijaElektromagnetska silaElektromagnetsko poljeOsnovne sileČestica

🔥 Trending searches on Wiki Srpskohrvatski / Српскохрватски:

Sivi domSveti GeorgijeKarolina Vidović KrištoAstrološki znakoviBunjevciVrnjačka BanjaVojska SrbijeAlkaniZubiHrastRoger FedererSelamLjudska pravaParizMilan ObrenovićBik (znak)ApostoliDražen PetrovićPerunZoster (bolest)Dragan BursaćSveti SavaPetar II Petrović NjegošSovjetski SavezDomaća kozaGeografija RusijeHlorQueerNikolaj VelimirovićSumnjivo liceAlkalni metaliVremenska zonaKičmena moždinaKlasifikacija opasnih materijaKotorTransženaPrnjavorIsusSpisak sportovaKvadratni metarHarfaKnjiževnostRadijusIslamski kalendarRibe (znak)AranđelovacŠabacKarađorđeAnoreksijaKozlacJosif StaljinMazohizamPlastikaSkupljači perjaVršacDiklofenakPljuvačne žlezdeMentalni poremećajPlacebo efekatZadruga (TV emisija)UstavIzraelMomčilo GavrićSpisak graničnih prijelaza Bosne i HercegovineJugoslavijaTrojni paktMirijevoOperativni sistemUžiceDjevica (znak)Genetski modifikovana hranaBitka na KozariDrugi Hristov dolazakGizela VukovićTutinAntički RimIndonezijaMrnjavčevićiRijeka🡆 More