Algebra Pole

V abstraktnej algebre označuje pole algebrickú štruktúru zloženú z množiny a na nej definovaných dvoch operácií, ktoré sa správajú podobne ako sčítanie a násobenie na racionálnych či reálnych číslach.

Tento stupeň abstrakcie nám umožňuje študovať všetky podobné štruktúry naraz. Pole je teleso, v ktorom je multiplikatívna operácia komutatívna.

Úvod

Polia sú dôležité objekty, pretože poskytujú užitočné zovšeobecnenie mnohých rôznych systémov, vrátane číselných, ako sú racionálne, reálne a komplexné čísla. Platia v nich klasické pravidlá asociativity, komutativity a distributivity. Polia sa vyskytujú v rozmanitých oblastiach matematiky (pozri aj príklady nižšie).

V časoch, keď sa abstraktná algebra ešte vyvíjala, zvyčajne definície polí neobsahovali požiadavku komutativity multiplikatívnej operácie a to, čo dnes nazývame poľom, by sa vtedy nazývalo komutatívnym poľom alebo racionálnou doménou. Všetky bežne zaužívané definície v súčasnosti majú komutatívnu multiplikatívnu operáciu. Štruktúry podobné poliam, v ktorých multiplikatívna operácia nie je komutatívna, dnes nazývame telesá. Niektoré kultúry a jazyky nemajú ani samostatné slovo označujúce pole, napr. vo francúzštine sa nazývajú corps commutatif (komutatívne teleso).

Koncept poľa sa používa napr. aj vo vektorových priestoroch a maticiach, dvoch štruktúrach z lineárnej algebry obsahujúcich prvky daných polí. Galoisova teória študuje symetrie rovníc skúmaním spôsobov, akými polia môžu byť obsiahnuté v iných poliach. (Pozri aj teória polí (algebra)).

Definícia

Pole je usporiadaná trojica (F, +, *), kde

  • F je ľubovoľná množina,
  • + je ľubovoľná binárna operácia na množine F, ktorú nazývame aditívna operácia poľa,
  • * je ľubovoľná binárna operácia na množine F, ktorú nazývame multiplikatívna operácia poľa,
  • (F, +) je abelovská grupa, ktorej neutrálny prvok nazývame nulou poľa a symbolicky zapisujeme 0,
  • Algebra Pole  je abelovská grupa a jej neutrálny prvok nazývame jednotkou poľa (symbolicky 1),
  • multiplikatívna operácia * je distributívna vzhľadom na aditívnu operáciu +, teda platí Algebra Pole  (keďže * je komutatívna operácia, * je distributívne z oboch strán vzhľadom na +).

Inak povedané, pole je teleso s komutatívnou multiplikatívnou operáciou.

Keďže každé pole je teleso, obor integrity a okruh, platia všetky vety dokázané s týmito štruktúrami.

Príklady

  • Komplexné čísla vzhľadom na klasické sčítanie násobenie. Toto pole obsahuje nasledovné podpolia:
    • pole racionálnych čísel Q,
    • algebrické číselné pole, čo je konečné rozšírenie poľa racionálnych čísel, t. j. pole obsahujúce racionálne čísla s konečnou dimenziou ako vektorový priestor nad poľom racionálnych čísel,
    • pole algebrických čísel nad Q, algebrický uzáver poľa Q,
    • pole reálnych čísel R vzhľadom na klasické operácie sčítania a násobenia. Pri obvyklom usporiadaní tvorí toto pole úplne usporiadané pole, ktoré je kategorické — toto je presne štruktúra, ktorá poskytuje základ pre najformálnejší prístup k matematickej analýze,
      • samotné pole reálnych čísel obsahuje niekoľko zaujímavých podpolí: reálne algebrické čísla, vypočítateľné čísla a definovateľné čísla.
  • Ak q > 1 je mocnina prvočísla, potom existuje (až na izomorfizmus) presne jedno konečné pole s q prvkami, zvyčajne označované Fq,Zq, Z/qZ, alebo GF(q). Všetký ostatné konečné polia sú izomorfné s nejakými takýmito poľami. Tieto polia sa nazývajú Galoisove polia (preto označenie GF(q)).
    • Pre dané prvočíslo p, množina všetkých celých čísel p je konečné pole o p prvkoch Fp = {0, 1, ..., p − 1} vzhľadom na operácie podľa zvyškového modulu p (t. j. vykonaním klasickej operácie sčítania či násobenia, pričom výsledok bude zvyšok po celočíselnom delení číslom p).
      • napríklad pre p=2 dostaneme najmenšie možné konečné pole (netriviálne), Z2, s dvoma prvkami: 0, 1. Operácie je možné popísať Cayleyho tabuľkami nasledovne:


     +  0  1        *  0  1      0  0  1        0  0  0      1  1  0        1  0  1 
          Toto pole je veľmi dôležité v informatike, zvlášť v šifrovaní a teórii kódovania.
  • Racionálne čísla sa dajú rozšíriť na pole p-adických čísel pre každé prvočíslo p. Tieto polia sú veľmi dôležité v teórii čísel a matematickej analýze.
  • Nech E a F sú dve polia, pričom E je podpole poľa F. Nech x je prvok poľa F nepatriaci poľu E. Potom zápisom E(x) označuje najmenšie podpole poľa F, ktoré obsahuje E a x. Toto podpole nazývame aj jednoduché rozšírenie poľa E. Napríklad, Q(i) je pole, ktoré pozostáva z komplexných čísel majúcich tak reálnu, ako aj imaginárnu zložku racionálne. Dokonca sa dá ukázať, že všetky nekonečné číselné polia sú jednoduché rozšírenia poľa Q.
  • Pre každé pole F je množina F(X) racionálnych funkcií s premennou X s koeficientami z F poľom. Toto pole sa definuje ako množina všetkých podielov polynómov s koeficientami z poľa F. Je to najjednoduchší príklad transcendentálneho rozšírenia.
  • Keď F je pole a p(x) je ireducibilný polynóm z okruhu polynómov F[x], potom faktorový okruh F(x)/(p(x)) (faktorový okruh poľa F podľa ideálu generovaného polynómom p(x)) je pole, ktoré má podpole izomorfné s F. Dá sa dokázať, že každé jednoduché algebrické rozšírenie F je izomorfné s nejakým poľom takéhoto typu.
  • Ak F je pole, potom množina F((X)) formálnych Laurentovych radov nad F je poľom.
  • Keď V je algebrická varieta nad poľom F, potom racionálne funkcie VF tvoria pole (funkčné pole nad V).
  • Keď S je Riemannov povrch, potom meromorfické funkcie SC tvoria pole.
  • Ak I je indexová množina, U je ultrafilter na I a Fi je pole pre každé i z I, potom ultrasúčin Fi (vzhľadom na U) je pole.
  • Hyperreálne a superreálne čísla rozširujú pole reálnych čísel o infinitezimálne a nekonečné čísla.

Jednoduché vety

  • Množina nenulových prvkov poľa F (zvyčajne ju označujeme ako F×) tvorí vzhľadom na multiplikatívnu operáciu abelovskú grupu, ktorej každá konečná podgrupa je cyklická.
  • Charakteristika každého poľa je buď nulová alebo prvočíselná. (Charakteristika poľa je najmenšie kladné číslo n také, že Algebra Pole  (Algebra Pole  je aditívna číselná mocnina) alebo 0, ak také číslo neexistuje. Ekvivalentná definícia hovorí, že charakteristika poľa F je jedinečný nezáporný generátor jadra jedinečného okruhového homomorfizmu ZF, ktoré posiela 1 |→ 1.)
  • Rád konečného poľa (počet prvkov) je mocnina prvočísla.
  • Podobne ako teleso, pole má len triviálne ideály ({0} a samého seba).
  • Ku každému poľu F existuje jedinečné pole G (až na izomorfizmus), ktoré obsahuje F, je algebrické na F a je algebricky uzavreté. Takéto pole G sa nazýva algebrický uzáver poľa F.
  • Algebrický uzáver poľa reálnych čísel je pole komplexných čísel.

Externé odkazy

Tags:

Algebra Pole ÚvodAlgebra Pole DefiníciaAlgebra Pole PríkladyAlgebra Pole Jednoduché vetyAlgebra Pole Externé odkazyAlgebra PoleAlgebraKomutatívna operáciaRacionálne čísloReálne čísloTeleso

🔥 Trending searches on Wiki Slovenčina:

Arborétum Borová horaSlovenské telefónne predvoľbyRobert KaliňákUžovka obojkováČlenovia Európskej únieOchtinská aragonitová jaskyňaKlement GottwaldImrich LichtenfeldHamásMravec hôrnyBitka o LypovecReklamaJana KovalčikováVeľké číslaZoznam regiónov SlovenskaZoznam štátov podľa rozlohyPanteón (Rím)Oľga Feldeková2023SlezinaJeleň lesnýKorelácia (štatistika)Hustota (objemová hmotnosť)Alexander DulebaMarián GáboríkLionel MessiMária AntoinettaPeter CmorejŠkrečok džungarskýHarry PotterSpišská Nová VesSpišský hradSvetové dedičstvo UNESCOVoľby do Národnej rady Slovenskej republiky v roku 2012Studená vojnaRimavská SobotaAlžbeta FerencováDokumentárny filmSacharidAdela VinczeováOkres (Slovensko)Časové pásmoKošiceKapverdyZoznam krajov na SlovenskuArgentínaProgresívne SlovenskoEurópaBarcelonaVoľby do Národnej rady Slovenskej republiky v roku 201029. marecLibanonBarokRomana TabákNitraJuraj SlafkovskýDemografia SlovenskaLudwig van BeethovenZoznam štátov podľa počtu obyvateľovSlováciGenerácia ZKrymská vojnaBrnoArménskoKórejská republikaBahniatkoRobert FicoOszkár VilágiFryderyk ChopinUjguriVeronika RemišováVýpočet dátumu Veľkej nociJán KoleníkVladimíra MarcinkováTrojuholníkLiptov (región)IntrovertDrozd čiernyRóbert Ondrejcsák🡆 More