Inverse Function

In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f.

The inverse of f exists if and only if f is bijective, and if it exists, is denoted by

Inverse Function
A function f and its inverse f −1. Because f maps a to 3, the inverse f −1 maps 3 back to a.

For a function , its inverse admits an explicit description: it sends each element to the unique element such that f(x) = y.

As an example, consider the real-valued function of a real variable given by f(x) = 5x − 7. One can think of f as the function which multiplies its input by 5 then subtracts 7 from the result. To undo this, one adds 7 to the input, then divides the result by 5. Therefore, the inverse of f is the function defined by

Definitions

Inverse Function 
If f maps X to Y, then f −1 maps Y back to X.

Let f be a function whose domain is the set X, and whose codomain is the set Y. Then f is invertible if there exists a function g from Y to X such that Inverse Function  for all Inverse Function  and Inverse Function  for all Inverse Function .

If f is invertible, then there is exactly one function g satisfying this property. The function g is called the inverse of f, and is usually denoted as f −1, a notation introduced by John Frederick William Herschel in 1813.

The function f is invertible if and only if it is bijective. This is because the condition Inverse Function  for all Inverse Function  implies that f is injective, and the condition Inverse Function  for all Inverse Function  implies that f is surjective.

The inverse function f −1 to f can be explicitly described as the function

    Inverse Function .

Inverses and composition

Recall that if f is an invertible function with domain X and codomain Y, then

    Inverse Function , for every Inverse Function  and Inverse Function  for every Inverse Function .

Using the composition of functions, this statement can be rewritten to the following equations between functions:

    Inverse Function  and Inverse Function 

where idX is the identity function on the set X; that is, the function that leaves its argument unchanged. In category theory, this statement is used as the definition of an inverse morphism.

Considering function composition helps to understand the notation f −1. Repeatedly composing a function f: XX with itself is called iteration. If f is applied n times, starting with the value x, then this is written as fn(x); so f 2(x) = f (f (x)), etc. Since f −1(f (x)) = x, composing f −1 and fn yields fn−1, "undoing" the effect of one application of f.

Notation

While the notation f −1(x) might be misunderstood, (f(x))−1 certainly denotes the multiplicative inverse of f(x) and has nothing to do with the inverse function of f. The notation Inverse Function  might be used for the inverse function to avoid ambiguity with the multiplicative inverse.

In keeping with the general notation, some English authors use expressions like sin−1(x) to denote the inverse of the sine function applied to x (actually a partial inverse; see below). Other authors feel that this may be confused with the notation for the multiplicative inverse of sin (x), which can be denoted as (sin (x))−1. To avoid any confusion, an inverse trigonometric function is often indicated by the prefix "arc" (for Latin arcus). For instance, the inverse of the sine function is typically called the arcsine function, written as arcsin(x). Similarly, the inverse of a hyperbolic function is indicated by the prefix "ar" (for Latin ārea). For instance, the inverse of the hyperbolic sine function is typically written as arsinh(x). The expressions like sin−1(x) can still be useful to distinguish the multivalued inverse from the partial inverse: Inverse Function . Other inverse special functions are sometimes prefixed with the prefix "inv", if the ambiguity of the f −1 notation should be avoided.

Examples

Squaring and square root functions

The function f: R → [0,∞) given by f(x) = x2 is not injective because Inverse Function  for all Inverse Function . Therefore, f is not invertible.

If the domain of the function is restricted to the nonnegative reals, that is, we take the function Inverse Function  with the same rule as before, then the function is bijective and so, invertible. The inverse function here is called the (positive) square root function and is denoted by Inverse Function .

Standard inverse functions

The following table shows several standard functions and their inverses:

Inverse arithmetic functions
Function f(x) Inverse f −1(y) Notes
x + a y a
ax ay
mx y/m m ≠ 0
1/x (i.e. x−1) 1/y (i.e. y−1) x, y ≠ 0
xp Inverse Function  (i.e. y1/p) x, y ≥ 0 if p is even; integer p > 0
ax logay y > 0 and a > 0
xex W (y) x ≥ −1 and y ≥ −1/e
trigonometric functions inverse trigonometric functions various restrictions (see table below)
hyperbolic functions inverse hyperbolic functions various restrictions

Formula for the inverse

Many functions given by algebraic formulas possess a formula for their inverse. This is because the inverse Inverse Function  of an invertible function Inverse Function  has an explicit description as

    Inverse Function .

This allows one to easily determine inverses of many functions that are given by algebraic formulas. For example, if f is the function

    Inverse Function 

then to determine Inverse Function  for a real number y, one must find the unique real number x such that (2x + 8)3 = y. This equation can be solved:

    Inverse Function 

Thus the inverse function f −1 is given by the formula

    Inverse Function 

Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function

    Inverse Function 

then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:

    Inverse Function 

Properties

Since a function is a special type of binary relation, many of the properties of an inverse function correspond to properties of converse relations.

Uniqueness

If an inverse function exists for a given function f, then it is unique. This follows since the inverse function must be the converse relation, which is completely determined by f.

Symmetry

There is a symmetry between a function and its inverse. Specifically, if f is an invertible function with domain X and codomain Y, then its inverse f −1 has domain Y and image X, and the inverse of f −1 is the original function f. In symbols, for functions f:XY and f−1:YX,

    Inverse Function  and Inverse Function 

This statement is a consequence of the implication that for f to be invertible it must be bijective. The involutory nature of the inverse can be concisely expressed by

    Inverse Function 
Inverse Function 
The inverse of g ∘ f is f −1 ∘ g −1.

The inverse of a composition of functions is given by

    Inverse Function 

Notice that the order of g and f have been reversed; to undo f followed by g, we must first undo g, and then undo f.

For example, let f(x) = 3x and let g(x) = x + 5. Then the composition g ∘ f is the function that first multiplies by three and then adds five,

    Inverse Function 

To reverse this process, we must first subtract five, and then divide by three,

    Inverse Function 

This is the composition (f −1 ∘ g −1)(x).

Self-inverses

If X is a set, then the identity function on X is its own inverse:

    Inverse Function 

More generally, a function f : XX is equal to its own inverse, if and only if the composition f ∘ f is equal to idX. Such a function is called an involution.

Graph of the inverse

Inverse Function 
The graphs of y = f(x) and y = f −1(x). The dotted line is y = x.

If f is invertible, then the graph of the function

    Inverse Function 

is the same as the graph of the equation

    Inverse Function 

This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have been reversed. Thus the graph of f −1 can be obtained from the graph of f by switching the positions of the x and y axes. This is equivalent to reflecting the graph across the line y = x.

Inverses and derivatives

The inverse function theorem states that a continuous function f is invertible on its range (image) if and only if it is either strictly increasing or decreasing (with no local maxima or minima). For example, the function

    Inverse Function 

is invertible, since the derivative f′(x) = 3x2 + 1 is always positive.

If the function f is differentiable on an interval I and f′(x) ≠ 0 for each xI, then the inverse f −1 is differentiable on f(I). If y = f(x), the derivative of the inverse is given by the inverse function theorem,

    Inverse Function 

Using Leibniz's notation the formula above can be written as

    Inverse Function 

This result follows from the chain rule (see the article on inverse functions and differentiation).

The inverse function theorem can be generalized to functions of several variables. Specifically, a differentiable multivariable function f : RnRn is invertible in a neighborhood of a point p as long as the Jacobian matrix of f at p is invertible. In this case, the Jacobian of f −1 at f(p) is the matrix inverse of the Jacobian of f at p.

Real-world examples

  • Let f be the function that converts a temperature in degrees Celsius to a temperature in degrees Fahrenheit,
    Inverse Function 
    then its inverse function converts degrees Fahrenheit to degrees Celsius,
    Inverse Function 
    since
    Inverse Function 
  • Suppose f assigns each child in a family its birth year. An inverse function would output which child was born in a given year. However, if the family has children born in the same year (for instance, twins or triplets, etc.) then the output cannot be known when the input is the common birth year. As well, if a year is given in which no child was born then a child cannot be named. But if each child was born in a separate year, and if we restrict attention to the three years in which a child was born, then we do have an inverse function. For example,
    Inverse Function 
  • Let R be the function that leads to an x percentage rise of some quantity, and F be the function producing an x percentage fall. Applied to $100 with x = 10%, we find that applying the first function followed by the second does not restore the original value of $100, demonstrating the fact that, despite appearances, these two functions are not inverses of each other.
  • The formula to calculate the pH of a solution is pH = −log10[H+]. In many cases we need to find the concentration of acid from a pH measurement. The inverse function [H+] = 10−pH is used.

Generalizations

Partial inverses

Inverse Function 
The square root of x is a partial inverse to f(x) = x2.

Even if a function f is not one-to-one, it may be possible to define a partial inverse of f by restricting the domain. For example, the function

    Inverse Function 

is not one-to-one, since x2 = (−x)2. However, the function becomes one-to-one if we restrict to the domain x ≥ 0, in which case

    Inverse Function 

(If we instead restrict to the domain x ≤ 0, then the inverse is the negative of the square root of y.) Alternatively, there is no need to restrict the domain if we are content with the inverse being a multivalued function:

    Inverse Function 
Inverse Function 
The inverse of this cubic function has three branches.

Sometimes, this multivalued inverse is called the full inverse of f, and the portions (such as x and −x) are called branches. The most important branch of a multivalued function (e.g. the positive square root) is called the principal branch, and its value at y is called the principal value of f −1(y).

For a continuous function on the real line, one branch is required between each pair of local extrema. For example, the inverse of a cubic function with a local maximum and a local minimum has three branches (see the adjacent picture).

Inverse Function 
The arcsine is a partial inverse of the sine function.

These considerations are particularly important for defining the inverses of trigonometric functions. For example, the sine function is not one-to-one, since

    Inverse Function 

for every real x (and more generally sin(x + 2πn) = sin(x) for every integer n). However, the sine is one-to-one on the interval [−π/2, π/2], and the corresponding partial inverse is called the arcsine. This is considered the principal branch of the inverse sine, so the principal value of the inverse sine is always between −π/2 and π/2. The following table describes the principal branch of each inverse trigonometric function:

function Range of usual principal value
arcsin π/2 ≤ sin−1(x) ≤ π/2
arccos 0 ≤ cos−1(x) ≤ π
arctan π/2 < tan−1(x) < π/2
arccot 0 < cot−1(x) < π
arcsec 0 ≤ sec−1(x) ≤ π
arccsc π/2 ≤ csc−1(x) ≤ π/2

Left and right inverses

Function composition on the left and on the right need not coincide. In general, the conditions

  1. "There exists g such that g(f(x))=x" and
  2. "There exists g such that f(g(x))=x"

imply different properties of f. For example, let f: R[0, ∞) denote the squaring map, such that f(x) = x2 for all x in R, and let g: [0, ∞)R denote the square root map, such that g(x) = x for all x ≥ 0. Then f(g(x)) = x for all x in [0, ∞); that is, g is a right inverse to f. However, g is not a left inverse to f, since, e.g., g(f(−1)) = 1 ≠ −1.

Left inverses

If f: XY, a left inverse for f (or retraction of f ) is a function g: YX such that composing f with g from the left gives the identity function

Inverse Function 
That is, the function g satisfies the rule
    If f(x)=y, then g(y)=x.

The function g must equal the inverse of f on the image of f, but may take any values for elements of Y not in the image.

A function f with nonempty domain is injective if and only if it has a left inverse. An elementary proof runs as follows:

  • If g is the left inverse of f, and f(x) = f(y), then g(f(x)) = g(f(y)) = x = y.
  • If nonempty f: XY is injective, construct a left inverse g: YX as follows: for all yY, if y is in the image of f, then there exists xX such that f(x) = y. Let g(y) = x; this definition is unique because f is injective. Otherwise, let g(y) be an arbitrary element of X.

    For all xX, f(x) is in the image of f. By construction, g(f(x)) = x, the condition for a left inverse.

In classical mathematics, every injective function f with a nonempty domain necessarily has a left inverse; however, this may fail in constructive mathematics. For instance, a left inverse of the inclusion {0,1} → R of the two-element set in the reals violates indecomposability by giving a retraction of the real line to the set {0,1}.

Right inverses

Inverse Function 
Example of right inverse with non-injective, surjective function

A right inverse for f (or section of f ) is a function h: YX such that

    Inverse Function 

That is, the function h satisfies the rule

    If Inverse Function , then Inverse Function 

Thus, h(y) may be any of the elements of X that map to y under f.

A function f has a right inverse if and only if it is surjective (though constructing such an inverse in general requires the axiom of choice).

    If h is the right inverse of f, then f is surjective. For all Inverse Function , there is Inverse Function  such that Inverse Function .
    If f is surjective, f has a right inverse h, which can be constructed as follows: for all Inverse Function , there is at least one Inverse Function  such that Inverse Function  (because f is surjective), so we choose one to be the value of h(y).[citation needed]

Two-sided inverses

An inverse that is both a left and right inverse (a two-sided inverse), if it exists, must be unique. In fact, if a function has a left inverse and a right inverse, they are both the same two-sided inverse, so it can be called the inverse.

    If Inverse Function  is a left inverse and Inverse Function  a right inverse of Inverse Function , for all Inverse Function , Inverse Function .

A function has a two-sided inverse if and only if it is bijective.

    A bijective function f is injective, so it has a left inverse (if f is the empty function, Inverse Function  is its own left inverse). f is surjective, so it has a right inverse. By the above, the left and right inverse are the same.
    If f has a two-sided inverse g, then g is a left inverse and right inverse of f, so f is injective and surjective.

Preimages

If f: XY is any function (not necessarily invertible), the preimage (or inverse image) of an element yY is defined to be the set of all elements of X that map to y:

    Inverse Function 

The preimage of y can be thought of as the image of y under the (multivalued) full inverse of the function f.

Similarly, if S is any subset of Y, the preimage of S, denoted Inverse Function , is the set of all elements of X that map to S:

    Inverse Function 

For example, take the function f: RR; xx2. This function is not invertible as it is not bijective, but preimages may be defined for subsets of the codomain, e.g.

    Inverse Function .

The preimage of a single element yY – a singleton set {y}  – is sometimes called the fiber of y. When Y is the set of real numbers, it is common to refer to f −1({y}) as a level set.

See also

Notes

References

Bibliography

Further reading

Tags:

Inverse Function DefinitionsInverse Function ExamplesInverse Function PropertiesInverse Function Real-world examplesInverse Function GeneralizationsInverse Function BibliographyInverse Function Further readingInverse Function

🔥 Trending searches on Wiki English:

Rúben AmorimPremier LeagueThe Walking Dead (TV series)World Wide WebTom HanksSouth AfricaEasterHoly WeekLiam NeesonSex positionGuy RitchieMiley CyrusGeorge VINatasha RichardsonDeadpool & WolverineAngelina JolieChang and Eng BunkerGeneration AlphaPope FrancisEnglish languageForge (character)Virginia WoolfBruce WillisDavid BowieCarol BurnettRajasthan RoyalsAustraliaThe Eras TourQueen VictoriaLeave the World Behind (film)Meta PlatformsRocco SiffrediMiranda CosgroveImmaculate (2024 film)Denis VilleneuveCorey FeldmanGeorge H. W. BushAlexander the GreatChristian BaleStephen CurryTitanicAbraham LincolnRachel McAdamsList of ethnic slursGodzilla Minus OneCleopatraThe Ministry of Ungentlemanly WarfareJohnny DeppIndian Premier LeagueThree-body problemCurb stompRosanne CashList of United States cities by population2026 FIFA World CupSoviet UnionDiana, Princess of WalesCatherine, Princess of WalesSean CombsSteven SpielbergManjummel BoysHanu-ManList of solar eclipses visible from the United StatesA Simple Favor (film)Special Atomic Demolition MunitionKeanu ReevesMalaysia Airlines Flight 370Dan SchneiderCandace OwensNorth KoreaDamsel (2024 film)Carl RuizList of World Series championsShyneJohn Wayne GacyBlake Lively🡆 More