Free Particle

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies.

In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.

Classical free particle

The classical free particle is characterized by a fixed velocity v. The momentum is given by

Free Particle 
and the kinetic energy (equal to total energy) by
Free Particle 
where m is the mass of the particle and v is the vector velocity of the particle.

Quantum free particle

Free Particle 
Propagation of de Broglie waves in 1d - real part of the complex amplitude is blue, imaginary part is green. The probability (shown as the colour opacity) of finding the particle at a given point x is spread out like a waveform, there is no definite position of the particle. As the amplitude increases above zero the curvature decreases, so the decreases again, and vice versa - the result is an alternating amplitude: a wave. Top: Plane wave. Bottom: Wave packet.

Mathematical description

A free particle with mass Free Particle  in non-relativistic quantum mechanics is described by the free Schrödinger equation:

Free Particle 

where ψ is the wavefunction of the particle at position r and time t. The solution for a particle with momentum p or wave vector k, at angular frequency ω or energy E, is given by a complex plane wave:

Free Particle 

with amplitude A and has two different rules according to its mass:

  1. if the particle has mass Free Particle : Free Particle  (or equivalent Free Particle ).
  2. if the particle is a massless particle: Free Particle .

The eigenvalue spectrum is infinitely degenerate since for each eigenvalue E>0, there corresponds an infinite number of eigenfunctions corresponding to different directions of Free Particle .

The De Broglie relations: Free Particle , Free Particle  apply. Since the potential energy is (stated to be) zero, the total energy E is equal to the kinetic energy, which has the same form as in classical physics:

Free Particle 

As for all quantum particles free or bound, the Heisenberg uncertainty principles Free Particle  apply. It is clear that since the plane wave has definite momentum (definite energy), the probability of finding the particle's location is uniform and negligible all over the space. In other words, the wave function is not normalizable in a Euclidean space, these stationary states can not correspond to physical realizable states.

Measurement and calculations

The integral of the probability density function

Free Particle 

where * denotes complex conjugate, over all space is the probability of finding the particle in all space, which must be unity if the particle exists:

Free Particle 

This is the normalization condition for the wave function. The wavefunction is not normalizable for a plane wave, but is for a wave packet.

Increasing amounts of wavepacket localization, meaning the particle becomes more localized.
In the limit ħ → 0, the particle's position and momentum become known exactly.
Interpretation of wave function for one spin-0 particle in one dimension. The wavefunctions shown are continuous, finite, single-valued and normalized. The colour opacity (%) of the particles corresponds to the probability density (which can measure in %) of finding the particle at the points on the x-axis.

Fourier decomposition

The free particle wave function may be represented by a superposition of momentum eigenfunctions, with coefficients given by the Fourier transform of the initial wavefunction:

Free Particle 

where the integral is over all k-space and Free Particle  (to ensure that the wave packet is a solution of the free particle Schrödinger equation). Here Free Particle  is the value of the wave function at time 0 and Free Particle  is the Fourier transform of Free Particle . (The Fourier transform Free Particle  is essentially the momentum wave function of the position wave function Free Particle , but written as a function of Free Particle  rather than Free Particle .)

The expectation value of the momentum p for the complex plane wave is

Free Particle 

and for the general wave packet it is

Free Particle 

The expectation value of the energy E is

Free Particle 

Group velocity and phase velocity

Free Particle 
Propagation of a wave packet, with the motion of a single peak shaded in purple. The peaks move at the phase velocity while the overall packet moves at the group velocity.

The phase velocity is defined to be the speed at which a plane wave solution propagates, namely

Free Particle 

Note that Free Particle  is not the speed of a classical particle with momentum Free Particle ; rather, it is half of the classical velocity.

Meanwhile, suppose that the initial wave function Free Particle  is a wave packet whose Fourier transform Free Particle  is concentrated near a particular wave vector Free Particle . Then the group velocity of the plane wave is defined as

Free Particle 

which agrees with the formula for the classical velocity of the particle. The group velocity is the (approximate) speed at which the whole wave packet propagates, while the phase velocity is the speed at which the individual peaks in the wave packet move. The figure illustrates this phenomenon, with the individual peaks within the wave packet propagating at half the speed of the overall packet.

Spread of the wave packet

The notion of group velocity is based on a linear approximation to the dispersion relation Free Particle  near a particular value of Free Particle . In this approximation, the amplitude of the wave packet moves at a velocity equal to the group velocity without changing shape. This result is an approximation that fails to capture certain interesting aspects of the evolution a free quantum particle. Notably, the width of the wave packet, as measured by the uncertainty in the position, grows linearly in time for large times. This phenomenon is called the spread of the wave packet for a free particle.

Specifically, it is not difficult to compute an exact formula for the uncertainty Free Particle  as a function of time, where Free Particle  is the position operator. Working in one spatial dimension for simplicity, we have:

Free Particle 
where Free Particle  is the time-zero wave function. The expression in parentheses in the second term on the right-hand side is the quantum covariance of Free Particle  and Free Particle .

Thus, for large positive times, the uncertainty in Free Particle  grows linearly, with the coefficient of Free Particle  equal to Free Particle . If the momentum of the initial wave function Free Particle  is highly localized, the wave packet will spread slowly and the group-velocity approximation will remain good for a long time. Intuitively, this result says that if the initial wave function has a very sharply defined momentum, then the particle has a sharply defined velocity and will (to good approximation) propagate at this velocity for a long time.

Relativistic quantum free particle

There are a number of equations describing relativistic particles: see relativistic wave equations.

See also

References

  • Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN 978-0-13-146100-0
  • Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles (2nd Edition), R. Eisberg, R. Resnick, John Wiley & Sons, 1985, ISBN 978-0-471-87373-0
  • Stationary States, A. Holden, College Physics Monographs (USA), Oxford University Press, 1971, ISBN 0-19-851121-3
  • Hall, Brian C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
  • Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN 0-07-145546 9
  • Elementary Quantum Mechanics, N.F. Mott, Wykeham Science, Wykeham Press (Taylor & Francis Group), 1972, ISBN 0-85109-270-5
  • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Outlines, Mc Graw Hill (USA), 1998, ISBN 007-0540187
    Specific

Further reading

  • The New Quantum Universe, T.Hey, P.Walters, Cambridge University Press, 2009, ISBN 978-0-521-56457-1.
  • Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN 978-0-07-154382-8
  • Quantum mechanics, E. Zaarur, Y. Peleg, R. Pnini, Schaum's Easy Outlines Crash Course, Mc Graw Hill (USA), 2006, ISBN 978-007-145533-6

Tags:

Free Particle Classical free particleFree Particle Quantum free particleFree Particle Relativistic quantum free particleFree Particle Further readingFree ParticlePhysics

🔥 Trending searches on Wiki English:

2023–24 Premier League2024 Indian general election in Karnataka1GmailSharlto CopleyAnthony Edwards (basketball)Four Horsemen of the ApocalypseHenry CavillCassandra NovaThe Pirate Bay2024 United States presidential electionLady GagaOlivia RodrigoOpinion polling for the 2024 Indian general electionKillers of the Flower Moon (film)Azumanga DaiohFrom the river to the seaJaden McDanielsElection Commission of IndiaCosmo JarvisZack SnyderAtomic bombings of Hiroshima and NagasakiManchester United F.C.The Goat LifeEuropeOnce Upon a Time in HollywoodRalf RangnickRestrictions on TikTok in the United StatesSoviet UnionBluey (2018 TV series)List of United States cities by populationList of ethnic slursRichard RudolphLuca GuadagninoRichard Nixon2023–24 AFC Champions LeagueHTTP cookieThree-body problemFacebookAustraliaWalton GogginsThe Tortured Poets DepartmentBangladeshMartin ØdegaardCloud seedingScarlett JohanssonResults of the 2019 Indian general electionXHamsterAmerican Horror StoryMichael Jackson2024 NFL draftAngus CloudWorld War IIThe Watchers (film)Emily BluntAndrew TateJalen BrunsonChris PrattBrendan FraserFranceLok SabhaDev PatelClara BowFighter (2024 film)Stellar BladeSouth KoreaLos AngelesMarlon BrandoShivam DubeThe Fall Guy (2024 film)Bill ClintonFlipkartKim Ji-won (actress)Brad PittSaint GeorgeArne SlotDwight D. Eisenhower🡆 More