Belső Energia

A belső energia (jele: U, mértékegysége: Joule) fizikai fogalom, a termodinamika egyik alapfogalma.

Egy zárt rendszer összes energiatartalmát, egy anyaghalmazban tárolt összes energiát jelenti. Ez a részecskék (sokféle) mozgási energiájából, a vonzásukból eredő energiából, a molekulák kötési energiájából, valamint az elektronburok energiájából tevődik össze. Nagysága az adott halmaz belső szerkezetével, belső tulajdonságaival függ össze. Extenzív mennyiség, tehát mennyisége a vizsgált részecskék számával arányosan nő. A belső energia elméleti fogalom, a gyakorlatban tényleges, számszerű értéke nem állapítható meg. A „belső” szó arra utal, hogy nem a fizikában tárgyalt külsőleg látható energiaformáról (mozgási, helyzeti energia stb.), hanem a testet, rendszert alkotó részecskék által belsőleg, egymás között megosztva hordozott energiáról van szó.

A belső energiának egyik része, a rendszert felépítő részecskék mozgásával kapcsolatos mozgási energia. Az atomok, molekulák, ionok sokféle mozgási energiával rendelkeznek, haladó- (transzlációs), forgó- (rotációs) és rezgő- (vibrációs) mozgást is végeznek. Mivel megfigyelték, hogy e rendezetlen mozgások mértéke összefügg a hőmérséklettel, ezért a részecskék mozgásához kapcsolódó energiát összefoglalóan termikus energiának vagy hőenergiának is nevezzük. A belső energiának a termikus energia része – pl. fizikai kísérletekben – számításokkal pontosan meghatározható.

A részecskék azonban más energiákkal is rendelkeznek, amelyek szintén a belső energia részei. Az atomok ugyanis elektronburokból és atommagból állnak, az atommag is további részecskéket tartalmaz. Az elektronok különböző pályákon mozognak, az atommagban pedig a magenergia van tárolva, ami a mag részecskéit együtt tartja. Ezek az energiák képezik a belső energia másik részét. Ennek tényleges, számszerű értékét azonban a gyakorlatban nem tudjuk meghatározni.

Elmélet

A halmazállapotától függetlenül minden rendszert atomok és/vagy molekulák és/vagy ionok – gyűjtőnevükön részecskék alkotják, amelyek különböző módon mozognak. E mozgások energiája a belső energia egy része (termikus energia, hőenergia). Pl. ha a rendszer tökéletes gáz, részecskéi egyenes vonalú egyenletes sebességgel mozognak, miközben egymással tökéletesen rugalmasan ütköznek. A kinetikus gázelmélet értelmében minden szabadsági fokra, szigorúbban értelmezve a részecske mozgását leírva minden másodfokú kifejezést tartalmazó tagra 1/2 k*T energia jut - ez az ekvipartíció elve. Mivel egy részecskének három szabadsági foka van - csak haladó mozgást tud végezni, azt pedig három tengely irányában - ezért egy részecskének a belső energiája:

    Belső Energia 

Az egyenletet Avogadro-állandóval és anyagmennyiséggel beszorozva kapjuk az idealizált gáz belső energiájának egyenletét, mely f szabadsági fokra értelmezve:

    Belső Energia 

ahol

A tökéletes gáz részecskéi azonban még más energiákkal is rendelkeznek, amelyek szintén a belső energia részei. Az atomok ugyanis elektronburokból és atommagból állnak, az atommag is további részecskéket tartalmaz. Az elektronok különböző pályákon mozognak, az atommagban pedig a magenergia van tárolva, ami a mag részecskéit együtt tartja. Ezek az energiák képezik a belső energia másik részét, amelyeknek viszont az abszolút értéke nem határozható meg.

A leírtak alapján azt kell mondani, hogy még a legegyszerűbb felépítésűnek gondolt rendszer esetében sem tudjuk a teljes energiatartalmat kiszámítani, vagyis egy rendszer belső energiájának a tényleges, számszerű értéke nem ismeretes.

Ha a rendszer reális gáz, akkor a fentebb említett mozgási lehetőségeken túl figyelembe kell venni a részecskék közötti vonzóerőből származó energiát, molekuláris rendszerek esetén pedig még a kötési energiákon túl a molekulák forgó- és különféle rezgőmozgásának energiáját is.

Ha a rendszer folyékony, vagy szilárd halmazállapotú, az összes mozgási lehetőség energiájának a figyelembe vétele ugyancsak lehetetlen.

A belső energia abszolút értékének a nem ismerete a gyakorlat szempontjából nem okoz problémát. Ha egy rendszerben valamilyen változás bekövetkezik, például egy kémiai reakció játszódik le, akkor a részecskék mozgási lehetőségei, és az elektronok mozgási energiái is jelentősen megváltoznak, de nem következik be semmilyen változás az atommagok energia állapotában. Ezért a rendszert alkotó részecskék atommagjainak az energiáját a kémiai reakciók és fizikai folyamatok szempontjából nem is tekintjük a belső energia részének.

Ha egy rendszerben például egy folyadék párolgása megy végbe, tudjuk, hogy egy meghatározott hőt kell közölni a rendszerrel, ami arra fordítódik, hogy a folyadék és a gőz állapotban lévő anyag részecskéinek a belső energia különbségét fedezze. A belső energianövekedés független attól, hogy a molekulák elektronjainak mekkora az energiája, mert a párolgás során azok energia állapota nem változik.

Összefoglalóan azt mondhatjuk, hogy egy rendszer belső energiája a részecskék sokféle mozgási energiájából, a vonzásukból eredő energiából, a molekulák kötési energiájából, valamint az elektronburok energiájából tevődik össze, de a tényleges, számszerű értéke nem állapítható meg.

Definíció

A belső energiát a termodinamika I. főtétele alapján definiáljuk. Ez hosszú megfigyelés, tapasztalat alatt megfogalmazott tétel az energiamegmaradás törvényével összhangban. Egy rendszer belső energiáját kétféleképpen változtathatjuk meg: hőt (Q) közölhetünk a rendszerrel, vagy munkát (W) végezhetünk a rendszeren. A vizsgált rendszer szempontjából: ha hőközlés történik a rendszerrel, vagy munkavégzés történik a rendszeren, akkor a kérdéses tag(ok) előjele pozitív, ha hőt vonunk el a rendszertől, vagy a rendszer végez munkát a környezeten, akkor a kérdéses tag(ok) előjele negatív. Összességében

    Belső Energia 

A fenti egyenlet infinitezimális formája

    Belső Energia 

mely kifejezésben a kis δ jel arra utal, hogy sem a hő, sem a munka nem állapotfüggvény, így csak nem pontos megfogalmazásban vehetjük azok megváltozását.

A térfogati munka

A munka leggyakrabban térfogati munkát jelent. Ha a rendszer nyitott, vagy állandó a nyomás és hőt vesz fel, szükségszerűen fellép a rendszer hőtágulásával összefüggő térfogatváltozás, ami térfogati munkavégzést is jelent:

    Belső Energia 

Ez a térfogati munka jelentős nagyságú, ha gáz halmazállapotú rendszerrel közlünk hőt, és elhanyagolhatóan kicsi, például szilárd testek melegítése közben. A gyakorlati életben a folyamatok során szükségszerűen fellépő térfogati munkát általában nem célszerű külön figyelembe venni, hanem érdemesebb a belső energiával együtt kezelni. Ennek eredményeképpen beszélhetünk egy szintén energia-dimenziójú újabb termodinamikai állapotjelzőről, az entalpiáról.

A belső energia teljes differenciálja

Mivel a belső energia állapotfüggvény, változói pedig az entrópia, a térfogat és az anyagmennyiség, ezért U(S,V,n) és

    Belső Energia , ahol n=n1 + n2 ... nK

A teljes differenciálból azonosítható a hőmérsékletnek, a nyomásnak és a kémiai potenciálnak megfelelő parciális derivált, így az egyenlet az alábbiak szerint egyszerűsödik:

    Belső Energia 

A belső energia hőmérsékletfüggése

Ha egy rendszerrel olyan feltételek között közlünk hőt, hogy a térfogat közben állandó maradjon, akkor a hő teljes mennyisége a rendszer belső energiájának növelésére fordítódik (nincs térfogati munka). Gyakorlatban ezt úgy érzékeljük, hogy a rendszer hőmérséklete megnő (ha nincs közben valamilyen izoterm fázisátalakulás). Annak a mértéke, hogy mekkora lesz a hőmérsékletnövekedés, a rendszer hőkapacitásától függ.

Belső Energia 
A moláris hőkapacitás hőmérsékletfüggése

Az állandó térfogaton mért hőkapacitás definíció összefüggéséből kiindulva,

    Belső Energia 

melynek moláris formája

    Belső Energia 

ha

    Belső Energia 

azaz a kis u moláris belső energiát jelöl.

A rendszer T hőmérsékletre vonatkozó belső energiája a változók szétválasztása után hőmérséklet szerinti integrálással számítható ki.

    Belső Energia .

Mint a mellékelt ábra mutatja, T2 és T1 hőmérsékleten a rendszer belső energiájának a különbsége a Cv függvény adott szakasza alatti terület nagyságával arányos.

Standard állapot

Ha T1-nek a 0 K hőmérsékletet választjuk, akkor a Uo – az integrálási állandó – az ún. nullpont-energia jelenti (ami a kvantumelmélet szerint a tapasztalattal megegyezően nem nulla, de nem ismeretes):

    Belső Energia .

A gyakorlati számítások céljára To-ként nem az abszolút nulla fokot, hanem az ún. standard hőmérsékletet a 25,0 oC-ot, vagyis a 298,15 K-t választották:

    Belső Energia .

Standard belső energia

A belső energia abszolút értékének a nem ismerete a gyakorlati életben nem okoz problémát, mert nem a tényleges érték, hanem egy-egy folyamatban a belső energia megváltozásának a nagysága a fontos jellemző. Például ha a földgáz elég, akkor az a fontos adat, hogy mekkora a belső energia különbsége az égési folyamat végén az égési folyamat előtti állapothoz képest. Az energiamegmaradás törvénye értelmében ennyi lehet a maximális energia, ami az égés során felszabadulhat, függetlenül attól, hogy kiinduláskor mekkora volt a belső energia tényleges értéke.

A belső energia abszolút értéke nem ismerhető meg, és gyakorlati értéke sem lenne, de a számítások egységesítése céljából célszerűnek látszott a standard állapot és a standard belső energia definiálása.

Belső Energia 
A képződési belső energia hőmérsékletfüggése

Standard hőmérsékletként a 25,0 °C-ot, vagyis a 298,15 K-t, standard nyomásként pedig a 105 Pa-t azaz 1 bar-t választották. A definíció szerint minden – standard állapotban stabilis állapotú – kémiai elem standard belső energiája (standard képződési belső energiája) nulla:

    Belső Energia 

Az energiamegmaradás törvénye és a Hess-törvény figyelembe vételével vegyületek standard képződési belső energiája pedig a képződési reakcióegyenlet ismeretében számítható ki, más hőmérsékletre pedig a hőkapacitás hőmérsékletfüggvényének integrálásával számítható:

    Belső Energia .

Jegyzetek

Kapcsolódó szócikkek

Tags:

Belső Energia ElméletBelső Energia DefinícióBelső Energia A térfogati munkaBelső Energia A belső energia teljes differenciáljaBelső Energia A belső energia hőmérsékletfüggéseBelső Energia Standard állapotBelső Energia Standard belső energiaBelső Energia JegyzetekBelső Energia Kapcsolódó szócikkekBelső EnergiaExtenzív mennyiségKötési energiaTermodinamika

🔥 Trending searches on Wiki Magyar:

Belügyminisztérium III/II. CsoportfőnökségRadnóti MiklósBrigitte NielsenHidrogénColumboDunaBaltimore (Maryland)Magyarország AlkotmánybíróságaToy Story 3.Joss StoneSzájer JózsefLabdarúgó-Európa-bajnokságNCoreTacskóPsota IrénSportágak listájaKémiai elemek periódusos rendszereKínaAz álommelóOrszágúti diszkó (film, 2024)Mihail Szergejevics GorbacsovNetflixMacskaKurucokTaylor SwiftKommunizmusVI. György brit királyÖrdög NóraJoseph GoebbelsIszlám ÁllamPalvin BarbaraZendayaEgyesült Nemzetek SzervezeteApostolGame (rapper)Gulyás MártonRyan GoslingSzent Család-templom (Barcelona)Lengyelország1848–49-es forradalom és szabadságharcOndóCovid19Nagy Ervin (színművész)Gulyás GergelyCsillagok háborújaHonfoglalásFöldBarátok közt (9. évad)Tényi István (tanár)Országok autójelének és doménnevének listája2024. évi nyári olimpiai játékokHúsvétGólkirályság2024-es Formula–1 világbajnokságAvril Lavigne2010-es magyarországi országgyűlési választásDűne (film, 2021)Kádár János (politikus)2018-as magyarországi országgyűlési választásEgyesült Arab EmírségekDiána walesi hercegnéPárbeszéd – A Zöldek PártjaABBAMagyar Péter (jogász)FranciaországIV. Balduin jeruzsálemi királyMoszkvaBirmingham bandájaTrónok harca (televíziós sorozat)SzegedVII. KleopátraÉsztországVitézy DávidFeltámadás (vallás)BalatonhenyeVespa (motorkerékpár)🡆 More