Суперпроводност

Суперпроводљивост или суперпроводност је појава код извесних материјала на ниским температурама која се карактерише са: потпуним одсуством електричног отпора (R=0), или потпуним одсуством магнетног поља у унутрашњости тог материјала (Мајснеров ефекат).

Тиме се за суперпроводнике каже да су то идеални проводници и идеални дијамагнетици. Суперпроводност се јавља испод критичне температуре Tc, која се разликује за различите материјале. На температурама вишим од критичне материјали се враћају у своју основну фазу. Суперпроводност има манифестације које су интересантне широј јавности и често се користе у популаризацији науке. Један од таквих макроскопских манифестација је у виду Мајснеровог ефекта када суперпроводници истискују из себе магнетно поље. Суперпроводност се манифестује и у виду непрекидног протицања струје кроз затворено коло ако се температура одржава испод критичне.

Суперпроводност
Магнет лебди изнад охлађеног суперпроводника (око −197 °C).
Суперпроводност
Керамички суперпроводник лебди изнад магнетне траке.

За разлику од обичног металног проводника, чији отпор постепено опада како се његова температура снижава чак и до скоро апсолутне нуле, суперпроводник има карактеристичну критичну температуру испод које отпор нагло пада на нулу. Електрична струја кроз петљу од суправодљиве жице може трајати бесконачно без извора напајања.

Историјат

  • Феномен суперпроводности је 1911. године открио холандски научник Камерлинг Онес у Лајдену. У Деваровом суду у колу од суперпроводног материјала који је чинила жива на довољно ниској температури, струја је текла преко две године од затварања кола без промене магнетног поља при одржавању довољно ниске температуре. Иако су се научници деценијама бавили овим феноменом, основа појаве није била позната све до педесетих и шездесетих година 20. века.
  • 1957. године су амерички физичари Џон Бардин (John Bardeen), Лион Купер (Leon Cooper) и Роберт Шрифер (Robert Schrieffer) објавили теорију суперпроводљивости (за конвенционалне, тада једино познате, суперпроводнике), сада познату као БЦС теорија. За ово откриће су добили Нобелову награду петнаест година касније, 1972. године. (То је била Бардинова друга Нобелова награда; прву је добио за рад на развоју транзистора.) Кључни део БЦС теорије је идеја да проводни електрони граде парове, названи Куперови парови, као последица интеракције са позитивним јонима кристала.
  • Тема суперпроводности је поново почела да буде актуелна почев од 1986. године када су откривени високотемпературни суперпроводници. Иако се феноменолошки ови суперпроводници понашају врло слично, њиихово објашњење је и данас отворено питање у науци.

Теорије суперпроводности

Историјски, постоје три теорије суперпроводности:

  • Лондонова теорија - феноменолошка теорија
  • Гинзбург-Лондонова - Лоднонова феноменолошка теорија која се ослања на Гинзбургову теорију фазних прелаза 2. реда
  • БЦС теорија суперпроводности (BCS) по физичарима Бардвину, Куперу и Шриферу - микроскопска теорија у којој Хамилтонијан ипак није прави, већ је одређен у апроксимацији средњег поља. БЦС теорија се примењује у две варијанте:

Подела

Суперпроводност се појављује код разних материјала, укључујући и једноставне елементе попут калаја и алуминијума, неке маталне легуре, и високодопиране полупроводнике, као и извесна керамичка једињења која садрже нешто атома бакра и кисеоника. Друга врста једињења, позната као купрати, су високотемпературни суперпроводници. Суперпроводност се не појављује код племенитих метала попут злата и сребра, нити код феромагнетних метала попут гвожђа (мада гвожђе може да се претворити у суперпроводник ако се подвргне врло високим притисцима).

Поред класичних суперпроводника, постоји и класа материјала, позната као неконвенционални суперпроводници, код које се јавља суперпроводност, али чија су физичка својства у супротности са теоријом конвенционалних суперпроводника. Наиме, високотемпературни суперпроводници, откривени 1986, показују особину суперпроводљивости на температурама далеко вишим него што би то било могуће по конвенционалној теорији (ипак, ова температура је још увек далеко испод собне температуре). Тренутно не постоји целовита теорија високотемпературне суперпроводности.

Примери суперпроводљивих материјала
Супстанца Критична температура
у K
Критична температура
у °C
волфрам 0,012 −273,139
галијум 1,091 −272,059
алуминијум 1,14 −272,01
жива 4,153 −268,997
тантал 4,483 −268,667
олово 7,193 −265,957
ниобијум 9,5 −263,65
AuPb 7,0 −266,15
Техницијум 11,2 −266,07
MoN 12,0 −261,15
PbMo6S8 15 −258,15
K3C60 19 −254,15
Nb3Ge 23 −250,15
La2CuO4 35 −238,15
MgB2 39 −234,15
Cs3C60 40 −233,15
Bi2Sr2CaCu2O8 92 −181,15
YBa2Cu3O7-x; x ~ 0,2 93 −180,15
Bi2Sr2Ca2Cu3O10 110 −163,15
HgBa2Ca2Cu3O8+x 133 −140,15

Објашњење појаве

Спарени електрони не могу индивидуално добити или изгубити мале количине енергије, као што би могли у делимично попуњеној проводној зони. Њихово спаривање ствара енергијски процеп у дозвољеним квантним нивоима, а на ниским температурама не постоји довољно енергије судара да се овај процеп прескочи. Према томе електрони могу слободно да се крећу кроз кристал без икакве размене енергије кроз сударе, то јест са нултим отпором.

Примена

Видео снимак супермагнета YBCO, који лебди изнад магнетне шине

Једна од могућих користи суперпроводника је та што би помоћу њих било могуће да се електрична енергија чува дуго времена, практично без утрошака. Ипак да би се суперпроводници користили у пракси, потребно је да „функционишу“ на температурама приближним собним (иначе би их утрошак енергије за хлађење учинио непрактичним). Зато већ дуги низ година научници раде на стварању суперпроводника који раде на све вишим температурама.

Референце

Спољашње везе

Tags:

Суперпроводност ИсторијатСуперпроводност ПоделаСуперпроводност Објашњење појавеСуперпроводност ПрименаСуперпроводност РеференцеСуперпроводност ЛитератураСуперпроводност Спољашње везеСуперпроводностMaterijalДијамагнетизамЕлектрична колаЕлектрична струјаЕлектрични отпорЕлектрични проводникМагнетно пољеМајснеров ефекатТемпература

🔥 Trending searches on Wiki Српски / Srpski:

ПерсонификацијаЧарлс II СтјуартЈован ДучићSpisak međunarodnih auto-oznaka državaСергеј ТрифуновићМилош БиковићРат у Босни и ХерцеговиниСписак најдужих река светаМилан Марић (глумац, 1990)InstagramSlađana MiloševićДржаве чланице Европске унијеЈужна КорејаЂурађ БранковићЂурђевданЗлатан ИбрахимовићРенесансаТрстРуско-украјински ратKupujemProdajemМанастир ТуманеСписак телекомуникационих оператора у Србији18. децембарСунчев системСтефан Урош IIIЕлизабета IIОрганизамХолокаустЈасенМилан Стојадиновић31. јануарDebelo crevoСписак држава по броју становникаЏејсон СтејтамМихаило ОбреновићЖенскарошМанастир МилешеваОгњанка ОгњановићФеђа ШтуканСарајевоМолдавијаРатко МладићАлександар БерчекЗолтан ДаниЏорџ ВеаЧасовникВладан ЛукићШпанијаДевица (астролошки знак)Зорана МихајловићПепа ПрасеПородично благоПатријарх српски ПавлеДоминиканска РепубликаЋирилицаАрхејеСаваАлександар РадојичићСловениВидовдански уставШумадијаТитаникАћим КатићАргентинаЈерменијаРоналдоМарсељски атентатНебојша МиловановићРадован ВујовићИсландИндонезијаV ефекатMaybachТифусБор (град)Списак председника Сједињених Америчких ДржаваВојвода (војни чин)Никола Тесла🡆 More