Траектория

Траекто́рия материа́льной то́чки — линия в пространстве, являющаяся множеством геометрических точек, где можно найти материальную точку, в физической задаче.

Вид траектории свободной материальной точки зависит от действующих на точку сил, начальных условий движения и от выбора системы отсчёта, а несвободной — также от наложенных связей.

Траектория
Траектории трёх объектов (угол запуска — 70°, Distance — расстояние, Height — высота), разное лобовое сопротивление

Понятие о траектории имеет смысл и в отрыве от какого-либо реального движения. Но траектория, изображаемая в некоторой системе координат, сама по себе не даёт информации о причинах движения тела по ней, пока не выполнен анализ конфигурации поля действующих на тело сил в той же координатной системе.

Способы задания траектории

Вид траектории не зависит от особенностей её прохождения материальной точкой, поэтому для задания траектории могут применяться не физические законы или модели, а средства дифференциальной геометрии.

Так, траектория иногда задаётся функцией/функциями, связывающ-ей/-ими координаты на линии движения точки:

    Траектория  в случае движения по прямой,
    Траектория  для плоского случая,
    Траектория  и Траектория  в объёмном случае.

Но здесь необходимы взаимная однозначность связи координат и отсутствие повторного прохождения материальной точкой каких-либо участков. Например, если тело двигалось по отрезку от Траектория  до Траектория  и назад, то траектория является «двойной» (туда-обратно) линией, что будет упущено при вышеуказанном подходе. Тем не менее, такое координатное задание траектории во многих простых ситуациях удобно.

В общем случае движение материальной точки в кинематике описывается зависимостью радиус-вектора от времени:

    Траектория .

Такая зависимость представляет траекторию, давая избыток информации — кроме формы прочерчиваемой точкой геометрической линии, имея Траектория , можно получить скорость и другие параметры движения. Задание Траектория  подразумевает задание изменений трёх декартовых координат во времени:

    Траектория ,

где Траектория , Траектория , Траектория орты. Присутствие здесь времени Траектория , казалось бы, противоречит независимости траектории от деталей движения по ней, но на самом деле для задания именно траектории на место Траектория  в выражениях Траектория , Траектория , Траектория  можно подставлять любую взаимно однозначную функцию Траектория . Произвол не скажется на форме траектории, а будет «менять» скорость прохождения: скажем, при замене Траектория  на Траектория  скорость во всех точках траектории удвоится.

В выбранной системе отсчета, кривая, описываемая концом радиус-вектора в пространстве, может быть представлена в виде сопряжённых дуг различной кривизны, находящихся в общем случае в пересекающихся плоскостях. При этом кривизна каждой дуги определяется её радиусом кривизны (не путать с радиус-вектором Траектория ), направленным к дуге из мгновенного центра поворота (не путать с началом отсчета радиус-векторов), находящегося в той же плоскости, что и сама дуга. Прямая линия рассматривается как предельный случай кривой, радиус кривизны которой может считаться равным бесконечности.

Траектория и смежные понятия

  • Закон движения — зависимость радиус-вектора точки от времени Траектория ;
  • Путь — криволинейная координата вдоль траектории материальной точки (обычно обозначается символом Траектория );
  • Длина путидлина траектории, вычисляемая как
    Траектория ,
    где цифры 1 и 2 маркируют начальное и конечное положения точки, соответственно;
  • Перемещение — вектор из начального положения точки в конечное
    Траектория ,
    при этом всегда Траектория ;
  • Радиус кривизны — радиус дуги окружности, наилучшим образом аппроксимирующей траекторию в заданной точке.

Скорость материальной точки всегда направлена по касательной к дуге, используемой для описания траектории. При этом существует связь между величиной скорости Траектория , нормальным ускорением Траектория  и радиусом кривизны траектории Траектория  в конкретной геометрической точке:

    Траектория .

Не всякое движение с известной скоростью по кривой известного радиуса и найденное по приведённой выше формуле нормальное (центростремительное) ускорение связано с проявлением силы, направленной по нормали к траектории (центростремительной силы). Так, найденное по данным фотографии суточного движения светил ускорение любой из звёзд отнюдь не говорит о существовании вызывающей это ускорение силы, притягивающей её к Полярной звезде как центру вращения.

Траектория и уравнения динамики

Представление траектории как следа, оставляемого движением материальной точки, связывает чисто кинематическое понятие о траектории, как геометрической проблеме, с динамикой движения материальной точки, то есть проблемой определения причин её движения. Фактически, решение уравнений Ньютона (при наличии полного набора исходных данных) даёт траекторию материальной точки.

Движение свободной материальной точки

В соответствии с первым законом Ньютона, иногда называемым законом инерции, должна существовать такая система, в которой свободное тело сохраняет (как вектор) свою скорость. Такая система отсчёта называется инерциальной. Траекторией такого движения является прямая линия, а само движение называется равномерным и прямолинейным.

Движение под действием внешних сил

    в инерциальной системе отсчёта

Если в инерциальной системе скорость Траектория  движения объекта (для неподвижного в данной системе наблюдателя) с массой Траектория  меняется по направлению, даже оставаясь прежней по величине, то есть тело производит поворот и движется по дуге с радиусом кривизны Траектория , то значит, это тело испытывает нормальное ускорение Траектория . Причиной, вызывающей это ускорение, является центростремительная сила, прямо пропорциональная этому ускорению. В этом состоит суть второго закона Ньютона:

    Траектория ,

где Траектория  есть векторная сумма сил, действующих на тело, Траектория  — его ускорение, а Траектория  — инертная масса.

В общем случае тело не бывает свободно в своём движении, и на его положение, а в некоторых случаях и на скорость, налагаются ограничения — связи. Если связи накладывают ограничения только на координаты тела, то такие связи называются геометрическими. Если же они распространяются и на скорости, то они называются кинематическими. Если уравнение связи может быть проинтегрировано во времени, то такая связь называется голономной.

Действие связей на систему движущихся тел описывается силами, называемыми реакциями связей. В таком случае сила, входящая в левую часть выражения закона Ньютона, есть векторная сумма активных (внешних) сил и реакции связей.

Существенно, что в случае голономных связей становится возможным описать движение механических систем в обобщённых координатах, входящих в уравнения Лагранжа. Число этих уравнений зависит лишь от числа степеней свободы системы и не зависит от количества входящих в систему тел, положение которых необходимо определять для полного описания движения.

Если же связи, действующие в системе идеальны, то есть в них не происходит переход энергии движения в другие виды энергии, то при решении уравнений Лагранжа автоматически исключаются все неизвестные реакции связей.

Наконец, если действующие силы принадлежат к классу потенциальных, то при соответствующем обобщении понятий становится возможным использования уравнений Лагранжа не только в механике, но и других областях физики.

Действующие на материальную точку силы в этом понимании однозначно определяют форму траектории её движения (при известных начальных условиях). Обратное утверждение в общем случае несправедливо, поскольку одна и та же траектория может иметь место при различных комбинациях активных сил и реакций связи.

    в неинерциальной системе отсчёта

Если система отсчёта неинерциальна (то есть движется с неким ускорением относительно инерциальной системы отсчёта), то в ней также возможно использование закона Ньютона, однако в левой части необходимо учесть так называемые силы инерции (в том числе, центробежную силу и силу Кориолиса, связанные с вращением неинерциальной системы отсчёта).

Значимость выбора системы отсчёта

Траектория 
Суточное движение светил в системе отсчёта, связанной с фотоаппаратом в проекции на плоскость рисунка

Уточнение о «привязке» траектории к выбору координатной системы принципиально, так как форма траектории зависит от этого выбора. Качественные и количественные различия траекторий возникают и между инерциальными системами, и если одна или обе системы неинерциальны.

Наблюдаемость траектории

Возможно наблюдение траектории при неподвижности объекта, но при движении системы отсчёта. Так, звёздное небо может послужить хорошей моделью инерциальной и неподвижной системы отсчёта. Однако при длительной экспозиции эти звёзды представляются движущимися по круговым траекториям.

Возможен и противоположный случай, когда тело явно движется, но траектория в проекции на плоскость наблюдения является одной неподвижной точкой. Это, например, случай летящей прямо в глаз наблюдателя пули или уходящего от него поезда.

Модификация формы траектории

Траектория 
Прямолинейное равномерно ускоряющееся движение в одной инерциальной системе в общем случае будет параболическим в другой равномерно двигающейся инерциальной системе отсчёта.

Нередко оказывается, что форма траектории зависит от системы отсчёта, избранной для описания движения материальной точки радикальным образом. Так, прямолинейное равноускоренное движение (скажем, свободое падение) в одной инерциальной системе в общем случае будет параболическим в другой равномерно двигающейся инерциальной системе отсчёта (см. рис.).

В соответствии с принципом относительности Галилея, существует бесконечное множество равноправных инерциальных систем (ИСО), движение которых одна относительно другой не может быть установлено никаким образом путём наблюдения любых процессов и явлений, происходящих только в этих системах. Прямая траектория равномерного движения объекта в одной системе будет выглядеть также прямой в любой другой инерциальной системе, хотя величина и направление скорости будут зависеть от выбора системы, то есть от величины и направления их относительной скорости.

Вместе с тем Принцип Галилея не утверждает, что одно и то же явление, наблюдаемое из двух разных ИСО, будут выглядеть одинаково. Поэтому рисунок предупреждает о двух типичных ошибках, связанных с забвением того, что:

1. Истинно, что любой вектор (в том числе вектор силы) может быть разложен по крайней мере на две составляющие. Но это разложение совершенно произвольно и не значит, что такие компоненты существуют в действительности. Для подтверждения их реальности должна привлекаться дополнительная информация, в любом случае не взятая из анализа формы траектории. Например, по рисунку 2 невозможно определить природу силы F, так же как невозможно утверждать, что она сама является или не является суммой сил разной природы. Можно лишь утверждать, что на изображённом участке она постоянна, и что для формирования наблюдаемой в данной СО криволинейности траектории служит вполне определённая в данной СО центростремительная часть этой силы. Зная лишь траекторию материальной точки в какой-либо инерциальной системе отсчёта и её скорость в каждый момент времени, нельзя определить природу сил, действовавших на неё.

2. Даже в случае наблюдения из ИСО, форма траектории ускоренно движущегося тела будет определяться не только действующими на него силами, но и выбором этой ИСО, никак на эти силы не влияющим. Центростремительная сила, показанная на рисунке 2, получена формально, и её величина непосредственно зависит от выбора ИСО.

Пример для вращающейся системы

Траектория 
Траектории одного и того же движения в неподвижной и вращающейся системах отсчёта. Вверху в инерциальной системе видно, что тело двигается по прямой. Внизу в неинерциальной видно, что тело повернуло в сторону от наблюдателя по кривой.

Представим себе работника театра, передвигающегося в колосниковом пространстве над сценой по отношению к зданию театра равномерно и прямолинейно и несущего над вращающейся сценой дырявое ведро с краской. Он будет оставлять на ней след от падающей краски в форме раскручивающейся спирали (если движется от центра вращения сцены) и закручивающейся — в противоположном случае. В это время его коллега, отвечающий за чистоту вращающейся сцены и на ней находящийся, будет поэтому вынужден нести под первым недырявое ведро, постоянно находясь под первым. И его движение по отношению к зданию также будет равномерным и прямолинейным, хотя по отношению к сцене, которая является неинерциальной системой, его движение будет искривлённым и неравномерным . Более того, для того, чтобы противодействовать сносу в направлении вращения, он должен мышечным усилием преодолевать действие силы Кориолиса, которое не испытывает его верхний коллега над сценой, хотя траектории обоих в инерциальной системе здания театра будут представлять прямые линии.

Но можно себе представить, что задачей рассматривающихся здесь коллег является именно нанесение прямой линии на вращающейся сцене. В этом случае нижний должен потребовать от верхнего движения по кривой, являющейся зеркальным отражением следа от ранее пролитой краски,оставаясь при этом над любой точкой прямой, проходящей в избранном радиальном направлении. Следовательно, прямолинейное движение в неинерциальной системе отсчёта не будет являться таковым для наблюдателя в инерциальной системе.

Более того, равномерное движение тела в одной системе, может быть неравномерным в другой. Так, две капли краски, упавшие в разные моменты времени из дырявого ведра, как в собственной системе отсчёта, так и в системе неподвижного по отношению к зданию нижнего коллеги (на уже прекратившей вращение сцене), будут двигаться по прямой (к центру Земли). Различие будет заключаться в том, что для нижнего наблюдателя это движение будет ускоренным, а для верхнего его коллеги, если он, оступившись, будет падать, двигаясь вместе с любой из капель, расстояние между каплями будет увеличиваться пропорционально первой степени времени, то есть взаимное движение капель и их наблюдателя в его ускоренной системе координат будет равномерным со скоростью Траектория , определяемой задержкой Траектория  между моментами падения капель; здесь Траектория  — ускорение свободного падения.

Поэтому форма траектории и скорость движения по ней тела, рассматриваемая в некоторой системе отсчёта, о которой заранее ничего не известно, не даёт однозначного представления о силах, действующих на тело. Решить вопрос о том, является ли эта система в достаточной степени инерциальной, можно лишь на основе анализа причин возникновения действующих сил.

Таким образом, в неинерциальной системе, во-первых, кривизна траектории и/или непостоянство скорости являются недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело действуют внешние силы, которые в конечном случае могут быть объяснены гравитационными или электромагнитными полями, а во-вторых, прямолинейность траектории является недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело не действуют никакие силы.

Бестраекторное движение

Согласно квантовомеханическим представлениям, в отношении движения микрочастицы (электрона или другой) в ограниченном пространстве следует говорить не о траектории Траектория , а об эволюции плотности вероятности обнаружить частицу в заданной точке Траектория . Эта плотность вероятности характеризуется квадратом модуля волновой функции Траектория . Зависимость Траектория  от её аргументов определяется с помощью уравнения Шрёдингера. Располагая волновой функцией, можно найти меняющееся со временем положение «центроида» Траектория  (интегрирование – по всему доступному частице объёму). В пределе, когда длина волны де Бройля частицы несопоставимо меньше размера пространственной области движения, такой подход становится эквивалентным привычному расчёту траектории.

См. также

Примечания

В физике есть ещё одна формула измерения траектории (пути): s=4Atv, где A - амплитуда, t - время, v - частота колебаний

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ссылки

Tags:

Траектория Способы задания траекторииТраектория и смежные понятияТраектория и уравнения динамикиТраектория Значимость выбора системы отсчётаТраектория Бестраекторное движениеТраектория См. такжеТраектория ПримечанияТраектория ЛитератураТраектория СсылкиТраекторияКриваяМатериальная точкаМножествоПространство в физикеСвязь (механика)СилаСистема отсчёта

🔥 Trending searches on Wiki Русский:

ИнгерманландияЗахват автобуса с детьми в ОрджоникидзеPGL CS2 Major Copenhagen 2024Синдром дефицита внимания и гиперактивностиОрден «За заслуги» (Франция)Киви (фрукт)Садовенко, Юрий ЭдуардовичМарфин, Михаил НаумовичСанада, ХироюкиСвященная Римская империяМарк ТвенМоцарт, Вольфганг Амадей2ГИСТелефонные коды странДень ПобедыДюна (фильм, 2021)ИудаизмСуровикин, Сергей ВладимировичТарасова, Дарья-Аглая ВикторовнаУкраинаСолженицын, Александр ИсаевичЭльбрусЗадача трёх тел (телесериал, 2024)ШизофренияЭкономика РоссииАлиса (голосовой помощник)Операция «Барбаросса»ХолокостЕлизавета IIЗенит (футбольный клуб, Санкт-Петербург)XHamsterIMGSRC.RUСписок стран по ВВП (номинал)Сунак, РишиЕкатеринбургАвитоРазин, Андрей ВладимировичБарселона (футбольный клуб)СамараБайкалГоршенёв, Михаил ЮрьевичRobloxMILFКунгуров, Евгений ВикторовичЧекалина, Валерия ВалерьевнаBTSГражданская война в РоссииШвейцарияЯрославльБразилияАрменияЛезгиныСто лет тому вперёдСулейман IСписок кодов состояния HTTPКриворучко, Алексей ЮрьевичПограничное расстройство личностиПоплавская, Яна ЕвгеньевнаДневник.руМиротворец (сайт)Шевцова, Татьяна ВикторовнаМастер и МаргаритаКартаполов, Андрей ВалериевичКиевЛокомотив (хоккейный клуб, Ярославль)АнимеКир БулычёвСталин, Василий ИосифовичГагарин, Юрий АлексеевичСписок иностранных агентов (Россия)Золотое кольцо РоссииКорьСписок стран по индексу человеческого развитияПростое числоБайкало-Амурская магистральУзбекистан🡆 More