Thomson Problem

The objective of the Thomson problem is to determine the minimum electrostatic potential energy configuration of N electrons constrained to the surface of a unit sphere that repel each other with a force given by Coulomb's law.

The physicist J. J. Thomson posed the problem in 1904 after proposing an atomic model, later called the plum pudding model, based on his knowledge of the existence of negatively charged electrons within neutrally-charged atoms.

Related problems include the study of the geometry of the minimum energy configuration and the study of the large N behavior of the minimum energy.

Mathematical statement

The electrostatic interaction energy occurring between each pair of electrons of equal charges (Thomson Problem , with Thomson Problem  the elementary charge of an electron) is given by Coulomb's law,

    Thomson Problem 

where Thomson Problem  is the electric constant and Thomson Problem  is the distance between each pair of electrons located at points on the sphere defined by vectors Thomson Problem  and Thomson Problem , respectively.

Simplified units of Thomson Problem  and Thomson Problem  (the Coulomb constant) are used without loss of generality. Then,

    Thomson Problem 

The total electrostatic potential energy of each N-electron configuration may then be expressed as the sum of all pair-wise interaction energies

    Thomson Problem 

The global minimization of Thomson Problem  over all possible configurations of N distinct points is typically found by numerical minimization algorithms.

Thomson's problem is related to the 7th of the eighteen unsolved mathematics problems proposed by the mathematician Steve Smale — "Distribution of points on the 2-sphere". The main difference is that in Smale's problem the function to minimise is not the electrostatic potential Thomson Problem  but a logarithmic potential given by Thomson Problem  A second difference is that Smale's question is about the asymptotic behaviour of the total potential when the number N of points goes to infinity, not for concrete values of N.

Example

The solution of the Thomson problem for two electrons is obtained when both electrons are as far apart as possible on opposite sides of the origin, Thomson Problem , or

    Thomson Problem 

Known exact solutions

Thomson Problem 
Schematic geometric solutions of the mathematical Thomson Problem for up to N = 5 electrons.

Mathematically exact minimum energy configurations have been rigorously identified in only a handful of cases.

  • For N = 1, the solution is trivial. The single electron may reside at any point on the surface of the unit sphere. The total energy of the configuration is defined as zero because the charge of the electron is subject to no electric field due to other sources of charge.
  • For N = 2, the optimal configuration consists of electrons at antipodal points. This represents the first one-dimensional solution.
  • For N = 3, electrons reside at the vertices of an equilateral triangle about any great circle. The great circle is often considered to define an equator about the sphere and the two points perpendicular to the plane are often considered poles to aid in discussions about the electrostatic configurations of many-N electron solutions. Also, this represents the first two-dimensional solution.
  • For N = 4, electrons reside at the vertices of a regular tetrahedron. Of interest, this represents the first three-dimensional solution.
  • For N = 5, a mathematically rigorous computer-aided solution was reported in 2010 with electrons residing at vertices of a triangular dipyramid. Of interest, it is impossible for any N solution with five or more electrons to exhibit global equidistance among all pairs of electrons.
  • For N = 6, electrons reside at vertices of a regular octahedron. The configuration may be imagined as four electrons residing at the corners of a square about the equator and the remaining two residing at the poles.
  • For N = 12, electrons reside at the vertices of a regular icosahedron.

Geometric solutions of the Thomson problem for N = 4, 6, and 12 electrons are Platonic solids whose faces are all congruent equilateral triangles. Numerical solutions for N = 8 and 20 are not the regular convex polyhedral configurations of the remaining two Platonic solids, the cube and dodecahedron respectively.

Generalizations

One can also ask for ground states of particles interacting with arbitrary potentials. To be mathematically precise, let f be a decreasing real-valued function, and define the energy functional

Thomson Problem 

Traditionally, one considers Thomson Problem  also known as Riesz Thomson Problem -kernels. For integrable Riesz kernels see the 1972 work of Landkof. For non-integrable Riesz kernels, the Poppy-seed bagel theorem holds, see the 2004 work of Hardin and Saff. Notable cases include:

  • α = ∞, the Tammes problem (packing);
  • α = 1, the Thomson problem;
  • α = 0, to maximize the product of distances, latterly known as Whyte's problem;
  • α = −1 : maximum average distance problem.

One may also consider configurations of N points on a sphere of higher dimension. See spherical design.

Solution algorithms

Several algorithms have been applied to this problem. The focus since the millennium has been on local optimization methods applied to the energy function, although random walks have made their appearance:

  • constrained global optimization (Altschuler et al. 1994),
  • steepest descent (Claxton and Benson 1966, Erber and Hockney 1991),
  • random walk (Weinrach et al. 1990),
  • genetic algorithm (Morris et al. 1996)

While the objective is to minimize the global electrostatic potential energy of each N-electron case, several algorithmic starting cases are of interest.

Continuous spherical shell charge

Thomson Problem 
The extreme upper energy limit of the Thomson Problem is given by Thomson Problem  for a continuous shell charge followed by N(N − 1)/2, the energy associated with a random distribution of N electrons. Significantly lower energy of a given N-electron solution of the Thomson Problem with one charge at its origin is readily obtained by Thomson Problem , where Thomson Problem  are solutions of the Thomson Problem.

The energy of a continuous spherical shell of charge distributed across its surface is given by

    Thomson Problem 

and is, in general, greater than the energy of every Thomson problem solution. Note: Here N is used as a continuous variable that represents the infinitely divisible charge, Q, distributed across the spherical shell. For example, a spherical shell of Thomson Problem  represents the uniform distribution of a single electron's charge, Thomson Problem , across the entire shell.

Randomly distributed point charges

The global energy of a system of electrons distributed in a purely random manner across the surface of the sphere is given by

    Thomson Problem 

and is, in general, greater than the energy of every Thomson problem solution.

Here, N is a discrete variable that counts the number of electrons in the system. As well, Thomson Problem .

Charge-centered distribution

For every Nth solution of the Thomson problem there is an Thomson Problem th configuration that includes an electron at the origin of the sphere whose energy is simply the addition of N to the energy of the Nth solution. That is,

    Thomson Problem 

Thus, if Thomson Problem  is known exactly, then Thomson Problem  is known exactly.

In general, Thomson Problem  is greater than Thomson Problem , but is remarkably closer to each Thomson Problem th Thomson solution than Thomson Problem  and Thomson Problem . Therefore, the charge-centered distribution represents a smaller "energy gap" to cross to arrive at a solution of each Thomson problem than algorithms that begin with the other two charge configurations.

Relations to other scientific problems

The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge.

"No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism of the atom."

—Sir J. J. Thomson

Though experimental evidence led to the abandonment of Thomson's plum pudding model as a complete atomic model, irregularities observed in numerical energy solutions of the Thomson problem have been found to correspond with electron shell-filling in naturally occurring atoms throughout the periodic table of elements.

The Thomson problem also plays a role in the study of other physical models including multi-electron bubbles and the surface ordering of liquid metal drops confined in Paul traps.

The generalized Thomson problem arises, for example, in determining arrangements of protein subunits that comprise the shells of spherical viruses. The "particles" in this application are clusters of protein subunits arranged on a shell. Other realizations include regular arrangements of colloid particles in colloidosomes, proposed for encapsulation of active ingredients such as drugs, nutrients or living cells, fullerene patterns of carbon atoms, and VSEPR theory. An example with long-range logarithmic interactions is provided by Abrikosov vortices that form at low temperatures in a superconducting metal shell with a large monopole at its center.

Configurations of smallest known energy

In the following table[citation needed] Thomson Problem  is the number of points (charges) in a configuration, Thomson Problem  is the energy, the symmetry type is given in Schönflies notation (see Point groups in three dimensions), and Thomson Problem  are the positions of the charges. Most symmetry types require the vector sum of the positions (and thus the electric dipole moment) to be zero.

It is customary to also consider the polyhedron formed by the convex hull of the points. Thus, Thomson Problem  is the number of vertices where the given number of edges meet, Thomson Problem  is the total number of edges, Thomson Problem  is the number of triangular faces, Thomson Problem  is the number of quadrilateral faces, and Thomson Problem  is the smallest angle subtended by vectors associated with the nearest charge pair. Note that the edge lengths are generally not equal. Thus, except in the cases N = 2, 3, 4, 6, 12, and the geodesic polyhedra, the convex hull is only topologically equivalent to the figure listed in the last column.

N Thomson Problem  Symmetry Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Thomson Problem  Equivalent polyhedron
2 0.500000000 Thomson Problem  0 2 180.000° digon
3 1.732050808 Thomson Problem  0 3 2 120.000° triangle
4 3.674234614 Thomson Problem  0 4 0 0 0 0 0 6 4 0 109.471° tetrahedron
5 6.474691495 Thomson Problem  0 2 3 0 0 0 0 9 6 0 90.000° triangular dipyramid
6 9.985281374 Thomson Problem  0 0 6 0 0 0 0 12 8 0 90.000° octahedron
7 14.452977414 Thomson Problem  0 0 5 2 0 0 0 15 10 0 72.000° pentagonal dipyramid
8 19.675287861 Thomson Problem  0 0 8 0 0 0 0 16 8 2 71.694° square antiprism
9 25.759986531 Thomson Problem  0 0 3 6 0 0 0 21 14 0 69.190° triaugmented triangular prism
10 32.716949460 Thomson Problem  0 0 2 8 0 0 0 24 16 0 64.996° gyroelongated square dipyramid
11 40.596450510 Thomson Problem  0.013219635 0 2 8 1 0 0 27 18 0 58.540° edge-contracted icosahedron
12 49.165253058 Thomson Problem  0 0 0 12 0 0 0 30 20 0 63.435° icosahedron
(geodesic sphere {3,5+}1,0)
13 58.853230612 Thomson Problem  0.008820367 0 1 10 2 0 0 33 22 0 52.317°
14 69.306363297 Thomson Problem  0 0 0 12 2 0 0 36 24 0 52.866° gyroelongated hexagonal dipyramid
15 80.670244114 Thomson Problem  0 0 0 12 3 0 0 39 26 0 49.225°
16 92.911655302 Thomson Problem  0 0 0 12 4 0 0 42 28 0 48.936°
17 106.050404829 Thomson Problem  0 0 0 12 5 0 0 45 30 0 50.108° double-gyroelongated pentagonal dipyramid
18 120.084467447 Thomson Problem  0 0 2 8 8 0 0 48 32 0 47.534°
19 135.089467557 Thomson Problem  0.000135163 0 0 14 5 0 0 50 32 1 44.910°
20 150.881568334 Thomson Problem  0 0 0 12 8 0 0 54 36 0 46.093°
21 167.641622399 Thomson Problem  0.001406124 0 1 10 10 0 0 57 38 0 44.321°
22 185.287536149 Thomson Problem  0 0 0 12 10 0 0 60 40 0 43.302°
23 203.930190663 Thomson Problem  0 0 0 12 11 0 0 63 42 0 41.481°
24 223.347074052 Thomson Problem  0 0 0 24 0 0 0 60 32 6 42.065° snub cube
25 243.812760299 Thomson Problem  0.001021305 0 0 14 11 0 0 68 44 1 39.610°
26 265.133326317 Thomson Problem  0.001919065 0 0 12 14 0 0 72 48 0 38.842°
27 287.302615033 Thomson Problem  0 0 0 12 15 0 0 75 50 0 39.940°
28 310.491542358 Thomson Problem  0 0 0 12 16 0 0 78 52 0 37.824°
29 334.634439920 Thomson Problem  0 0 0 12 17 0 0 81 54 0 36.391°
30 359.603945904 Thomson Problem  0 0 0 12 18 0 0 84 56 0 36.942°
31 385.530838063 Thomson Problem  0.003204712 0 0 12 19 0 0 87 58 0 36.373°
32 412.261274651 Thomson Problem  0 0 0 12 20 0 0 90 60 0 37.377° pentakis dodecahedron
(geodesic sphere {3,5+}1,1)
33 440.204057448 Thomson Problem  0.004356481 0 0 15 17 1 0 92 60 1 33.700°
34 468.904853281 Thomson Problem  0 0 0 12 22 0 0 96 64 0 33.273°
35 498.569872491 Thomson Problem  0.000419208 0 0 12 23 0 0 99 66 0 33.100°
36 529.122408375 Thomson Problem  0 0 0 12 24 0 0 102 68 0 33.229°
37 560.618887731 Thomson Problem  0 0 0 12 25 0 0 105 70 0 32.332°
38 593.038503566 Thomson Problem  0 0 0 12 26 0 0 108 72 0 33.236°
39 626.389009017 Thomson Problem  0 0 0 12 27 0 0 111 74 0 32.053°
40 660.675278835 Thomson Problem  0 0 0 12 28 0 0 114 76 0 31.916°
41 695.916744342 Thomson Problem  0 0 0 12 29 0 0 117 78 0 31.528°
42 732.078107544 Thomson Problem  0 0 0 12 30 0 0 120 80 0 31.245°
43 769.190846459 Thomson Problem  0.000399668 0 0 12 31 0 0 123 82 0 30.867°
44 807.174263085 Thomson Problem  0 0 0 24 20 0 0 120 72 6 31.258°
45 846.188401061 Thomson Problem  0 0 0 12 33 0 0 129 86 0 30.207°
46 886.167113639 Thomson Problem  0 0 0 12 34 0 0 132 88 0 29.790°
47 927.059270680 Thomson Problem  0.002482914 0 0 14 33 0 0 134 88 1 28.787°
48 968.713455344 Thomson Problem  0 0 0 24 24 0 0 132 80 6 29.690°
49 1011.557182654 Thomson Problem  0.001529341 0 0 12 37 0 0 141 94 0 28.387°
50 1055.182314726 Thomson Problem  0 0 0 12 38 0 0 144 96 0 29.231°
51 1099.819290319 Thomson Problem  0 0 0 12 39 0 0 147 98 0 28.165°
52 1145.418964319 Thomson Problem  0.000457327 0 0 12 40 0 0 150 100 0 27.670°
53 1191.922290416 Thomson Problem  0.000278469 0 0 18 35 0 0 150 96 3 27.137°
54 1239.361474729 Thomson Problem  0.000137870 0 0 12 42 0 0 156 104 0 27.030°
55 1287.772720783 Thomson Problem  0.000391696 0 0 12 43 0 0 159 106 0 26.615°
56 1337.094945276 Thomson Problem  0 0 0 12 44 0 0 162 108 0 26.683°
57 1387.383229253 Thomson Problem  0 0 0 12 45 0 0 165 110 0 26.702°
58 1438.618250640 Thomson Problem  0 0 0 12 46 0 0 168 112 0 26.155°
59 1490.773335279 Thomson Problem  0.000154286 0 0 14 43 2 0 171 114 0 26.170°
60 1543.830400976 Thomson Problem  0 0 0 12 48 0 0 174 116 0 25.958°
61 1597.941830199 Thomson Problem  0.001091717 0 0 12 49 0 0 177 118 0 25.392°
62 1652.909409898 Thomson Problem  0 0 0 12 50 0 0 180 120 0 25.880°
63 1708.879681503 Thomson Problem  0 0 0 12 51 0 0 183 122 0 25.257°
64 1765.802577927 Thomson Problem  0 0 0 12 52 0 0 186 124 0 24.920°
65 1823.667960264 Thomson Problem  0.000399515 0 0 12 53 0 0 189 126 0 24.527°
66 1882.441525304 Thomson Problem  0.000776245 0 0 12 54 0 0 192 128 0 24.765°
67 1942.122700406 Thomson Problem  0 0 0 12 55 0 0 195 130 0 24.727°
68 2002.874701749 Thomson Problem  0 0 0 12 56 0 0 198 132 0 24.433°
69 2064.533483235 Thomson Problem  0 0 0 12 57 0 0 201 134 0 24.137°
70 2127.100901551 Thomson Problem  0 0 0 12 50 0 0 200 128 4 24.291°
71 2190.649906425 Thomson Problem  0.001256769 0 0 14 55 2 0 207 138 0 23.803°
72 2255.001190975 Thomson Problem  0 0 0 12 60 0 0 210 140 0 24.492° geodesic sphere {3,5+}2,1
73 2320.633883745 Thomson Problem  0.001572959 0 0 12 61 0 0 213 142 0 22.810°
74 2387.072981838 Thomson Problem  0.000641539 0 0 12 62 0 0 216 144 0 22.966°
75 2454.369689040 Thomson Problem  0 0 0 12 63 0 0 219 146 0 22.736°
76 2522.674871841 Thomson Problem  0.000943474 0 0 12 64 0 0 222 148 0 22.886°
77 2591.850152354 Thomson Problem  0 0 0 12 65 0 0 225 150 0 23.286°
78 2662.046474566 Thomson Problem  0 0 0 12 66 0 0 228 152 0 23.426°
79 2733.248357479 Thomson Problem  0.000702921 0 0 12 63 1 0 230 152 1 22.636°
80 2805.355875981 Thomson Problem  0 0 0 16 64 0 0 232 152 2 22.778°
81 2878.522829664 Thomson Problem  0.000194289 0 0 12 69 0 0 237 158 0 21.892°
82 2952.569675286 Thomson Problem  0 0 0 12 70 0 0 240 160 0 22.206°
83 3027.528488921 Thomson Problem  0.000339815 0 0 14 67 2 0 243 162 0 21.646°
84 3103.465124431 Thomson Problem  0.000401973 0 0 12 72 0 0 246 164 0 21.513°
85 3180.361442939 Thomson Problem  0.000416581 0 0 12 73 0 0 249 166 0 21.498°
86 3258.211605713 Thomson Problem  0.001378932 0 0 12 74 0 0 252 168 0 21.522°
87 3337.000750014 Thomson Problem  0.000754863 0 0 12 75 0 0 255 170 0 21.456°
88 3416.720196758 Thomson Problem  0 0 0 12 76 0 0 258 172 0 21.486°
89 3497.439018625 Thomson Problem  0.000070891 0 0 12 77 0 0 261 174 0 21.182°
90 3579.091222723 Thomson Problem  0 0 0 12 78 0 0 264 176 0 21.230°
91 3661.713699320 Thomson Problem  0.000033221 0 0 12 79 0 0 267 178 0 21.105°
92 3745.291636241 Thomson Problem  0 0 0 12 80 0 0 270 180 0 21.026°
93 3829.844338421 Thomson Problem  0.000213246 0 0 12 81 0 0 273 182 0 20.751°
94 3915.309269620 Thomson Problem  0 0 0 12 82 0 0 276 184 0 20.952°
95 4001.771675565 Thomson Problem  0.000116638 0 0 12 83 0 0 279 186 0 20.711°
96 4089.154010060 Thomson Problem  0.000036310 0 0 12 84 0 0 282 188 0 20.687°
97 4177.533599622 Thomson Problem  0.000096437 0 0 12 85 0 0 285 190 0 20.450°
98 4266.822464156 Thomson Problem  0.000112916 0 0 12 86 0 0 288 192 0 20.422°
99 4357.139163132 Thomson Problem  0.000156508 0 0 12 87 0 0 291 194 0 20.284°
100 4448.350634331 Thomson Problem  0 0 0 12 88 0 0 294 196 0 20.297°
101 4540.590051694 Thomson Problem  0 0 0 12 89 0 0 297 198 0 20.011°
102 4633.736565899 Thomson Problem  0 0 0 12 90 0 0 300 200 0 20.040°
103 4727.836616833 Thomson Problem  0.000201245 0 0 12 91 0 0 303 202 0 19.907°
104 4822.876522746 Thomson Problem  0 0 0 12 92 0 0 306 204 0 19.957°
105 4919.000637616 Thomson Problem  0 0 0 12 93 0 0 309 206 0 19.842°
106 5015.984595705 Thomson Problem  0 0 0 12 94 0 0 312 208 0 19.658°
107 5113.953547724 Thomson Problem  0.000064137 0 0 12 95 0 0 315 210 0 19.327°
108 5212.813507831 Thomson Problem  0.000432525 0 0 12 96 0 0 318 212 0 19.327°
109 5312.735079920 Thomson Problem  0.000647299 0 0 14 93 2 0 321 214 0 19.103°
110 5413.549294192 Thomson Problem  0 0 0 12 98 0 0 324 216 0 19.476°
111 5515.293214587 Thomson Problem  0 0 0 12 99 0 0 327 218 0 19.255°
112 5618.044882327 Thomson Problem  0 0 0 12 100 0 0 330 220 0 19.351°
113 5721.824978027 Thomson Problem  0 0 0 12 101 0 0 333 222 0 18.978°
114 5826.521572163 Thomson Problem  0.000149772 0 0 12 102 0 0 336 224 0 18.836°
115 5932.181285777 Thomson Problem  0.000049972 0 0 12 103 0 0 339 226 0 18.458°
116 6038.815593579 Thomson Problem  0.000259726 0 0 12 104 0 0 342 228 0 18.386°
117 6146.342446579 Thomson Problem  0.000127609 0 0 12 105 0 0 345 230 0 18.566°
118 6254.877027790 Thomson Problem  0.000332475 0 0 12 106 0 0 348 232 0 18.455°
119 6364.347317479 Thomson Problem  0.000685590 0 0 12 107 0 0 351 234 0 18.336°
120 6474.756324980 Thomson Problem  0.001373062 0 0 12 108 0 0 354 236 0 18.418°
121 6586.121949584 Thomson Problem  0.000838863 0 0 12 109 0 0 357 238 0 18.199°
122 6698.374499261 Thomson Problem  0 0 0 12 110 0 0 360 240 0 18.612° geodesic sphere {3,5+}2,2
123 6811.827228174 Thomson Problem  0.001939754 0 0 14 107 2 0 363 242 0 17.840°
124 6926.169974193 Thomson Problem  0 0 0 12 112 0 0 366 244 0 18.111°
125 7041.473264023 Thomson Problem  0.000088274 0 0 12 113 0 0 369 246 0 17.867°
126 7157.669224867 Thomson Problem  0 0 2 16 100 8 0 372 248 0 17.920°
127 7274.819504675 Thomson Problem  0 0 0 12 115 0 0 375 250 0 17.877°
128 7393.007443068 Thomson Problem  0.000054132 0 0 12 116 0 0 378 252 0 17.814°
129 7512.107319268 Thomson Problem  0.000030099 0 0 12 117 0 0 381 254 0 17.743°
130 7632.167378912 Thomson Problem  0.000025622 0 0 12 118 0 0 384 256 0 17.683°
131 7753.205166941 Thomson Problem  0.000305133 0 0 12 119 0 0 387 258 0 17.511°
132 7875.045342797 Thomson Problem  0 0 0 12 120 0 0 390 260 0 17.958° geodesic sphere {3,5+}3,1
133 7998.179212898 Thomson Problem  0.000591438 0 0 12 121 0 0 393 262 0 17.133°
134 8122.089721194 Thomson Problem  0.000470268 0 0 12 122 0 0 396 264 0 17.214°
135 8246.909486992 Thomson Problem  0 0 0 12 123 0 0 399 266 0 17.431°
136 8372.743302539 Thomson Problem  0 0 0 12 124 0 0 402 268 0 17.485°
137 8499.534494782 Thomson Problem  0 0 0 12 125 0 0 405 270 0 17.560°
138 8627.406389880 Thomson Problem  0.000473576 0 0 12 126 0 0 408 272 0 16.924°
139 8756.227056057 Thomson Problem  0.000404228 0 0 12 127 0 0 411 274 0 16.673°
140 8885.980609041 Thomson Problem  0.000630351 0 0 13 126 1 0 414 276 0 16.773°
141 9016.615349190 Thomson Problem  0.000376365 0 0 14 126 0 1 417 278 0 16.962°
142 9148.271579993 Thomson Problem  0.000550138 0 0 12 130 0 0 420 280 0 16.840°
143 9280.839851192 Thomson Problem  0.000255449 0 0 12 131 0 0 423 282 0 16.782°
144 9414.371794460 Thomson Problem  0 0 0 12 132 0 0 426 284 0 16.953°
145 9548.928837232 Thomson Problem  0.000094938 0 0 12 133 0 0 429 286 0 16.841°
146 9684.381825575 Thomson Problem  0 0 0 12 134 0 0 432 288 0 16.905°
147 9820.932378373 Thomson Problem  0.000636651 0 0 12 135 0 0 435 290 0 16.458°
148 9958.406004270 Thomson Problem  0.000203701 0 0 12 136 0 0 438 292 0 16.627°
149 10096.859907397 Thomson Problem  0.000638186 0 0 14 133 2 0 441 294 0 16.344°
150 10236.196436701 Thomson Problem  0 0 0 12 138 0 0 444 296 0 16.405°
151 10376.571469275 Thomson Problem  0.000153836 0 0 12 139 0 0 447 298 0 16.163°
152 10517.867592878 Thomson Problem  0 0 0 12 140 0 0 450 300 0 16.117°
153 10660.082748237 Thomson Problem  0 0 0 12 141 0 0 453 302 0 16.390°
154 10803.372421141 Thomson Problem  0.000735800 0 0 12 142 0 0 456 304 0 16.078°
155 10947.574692279 Thomson Problem  0.000603670 0 0 12 143 0 0 459 306 0 15.990°
156 11092.798311456 Thomson Problem  0.000508534 0 0 12 144 0 0 462 308 0 15.822°
157 11238.903041156 Thomson Problem  0.000357679 0 0 12 145 0 0 465 310 0 15.948°
158 11385.990186197 Thomson Problem  0.000921918 0 0 12 146 0 0 468 312 0 15.987°
159 11534.023960956 Thomson Problem  0.000381457 0 0 12 147 0 0 471 314 0 15.960°
160 11683.054805549 Thomson Problem  0 0 0 12 148 0 0 474 316 0 15.961°
161 11833.084739465 Thomson Problem  0.000056447 0 0 12 149 0 0 477 318 0 15.810°
162 11984.050335814 Thomson Problem  0 0 0 12 150 0 0 480 320 0 15.813°
163 12136.013053220 Thomson Problem  0.000120798 0 0 12 151 0 0 483 322 0 15.675°
164 12288.930105320 Thomson Problem  0 0 0 12 152 0 0 486 324 0 15.655°
165 12442.804451373 Thomson Problem  0.000091119 0 0 12 153 0 0 489 326 0 15.651°
166 12597.649071323 Thomson Problem  0 0 0 16 146 4 0 492 328 0 15.607°
167 12753.469429750 Thomson Problem  0.000097382 0 0 12 155 0 0 495 330 0 15.600°
168 12910.212672268 Thomson Problem  0 0 0 12 156 0 0 498 332 0 15.655°
169 13068.006451127 Thomson Problem  0.000068102 0 0 13 155 1 0 501 334 0 15.537°
170 13226.681078541 Thomson Problem  0 0 0 12 158 0 0 504 336 0 15.569°
171 13386.355930717 Thomson Problem  0 0 0 12 159 0 0 507 338 0 15.497°
172 13547.018108787 Thomson Problem  0.000547291 0 0 14 156 2 0 510 340 0 15.292°
173 13708.635243034 Thomson Problem  0.000286544 0 0 12 161 0 0 513 342 0 15.225°
174 13871.187092292 Thomson Problem  0 0 0 12 162 0 0 516 344 0 15.366°
175 14034.781306929 Thomson Problem  0.000026686 0 0 12 163 0 0 519 346 0 15.252°
176 14199.354775632 Thomson Problem  0.000283978 0 0 12 164 0 0 522 348 0 15.101°
177 14364.837545298 Thomson Problem  0 0 0 12 165 0 0 525 350 0 15.269°
178 14531.309552587 Thomson Problem  0 0 0 12 166 0 0 528 352 0 15.145°
179 14698.754594220 Thomson Problem  0.000125113 0 0 13 165 1 0 531 354 0 14.968°
180 14867.099927525 Thomson Problem  0 0 0 12 168 0 0 534 356 0 15.067°
181 15036.467239769 Thomson Problem  0.000304193 0 0 12 169 0 0 537 358 0 15.002°
182 15206.730610906 Thomson Problem  0 0 0 12 170 0 0 540 360 0 15.155°
183 15378.166571028 Thomson Problem  0.000467899 0 0 12 171 0 0 543 362 0 14.747°
184 15550.421450311 Thomson Problem  0 0 0 12 172 0 0 546 364 0 14.932°
185 15723.720074072 Thomson Problem  0.000389762 0 0 12 173 0 0 549 366 0 14.775°
186 15897.897437048 Thomson Problem  0.000389762 0 0 12 174 0 0 552 368 0 14.739°
187 16072.975186320 Thomson Problem  0 0 0 12 175 0 0 555 370 0 14.848°
188 16249.222678879 Thomson Problem  0 0 0 12 176 0 0 558 372 0 14.740°
189 16426.371938862 Thomson Problem  0.000020732 0 0 12 177 0 0 561 374 0 14.671°
190 16604.428338501 Thomson Problem  0.000586804 0 0 12 178 0 0 564 376 0 14.501°
191 16783.452219362 Thomson Problem  0.001129202 0 0 13 177 1 0 567 378 0 14.195°
192 16963.338386460 Thomson Problem  0 0 0 12 180 0 0 570 380 0 14.819° geodesic sphere {3,5+}3,2
193 17144.564740880 Thomson Problem  0.000985192 0 0 12 181 0 0 573 382 0 14.144°
194 17326.616136471 Thomson Problem  0.000322358 0 0 12 182 0 0 576 384 0 14.350°
195 17509.489303930 Thomson Problem  0 0 0 12 183 0 0 579 386 0 14.375°
196 17693.460548082 Thomson Problem  0.000315907 0 0 12 184 0 0 582 388 0 14.251°
197 17878.340162571 Thomson Problem  0 0 0 12 185 0 0 585 390 0 14.147°
198 18064.262177195 Thomson Problem  0.000011149 0 0 12 186 0 0 588 392 0 14.237°
199 18251.082495640 Thomson Problem  0.000534779 0 0 12 187 0 0 591 394 0 14.153°
200 18438.842717530 Thomson Problem  0 0 0 12 188 0 0 594 396 0 14.222°
201 18627.591226244 Thomson Problem  0.001048859 0 0 13 187 1 0 597 398 0 13.830°
202 18817.204718262 Thomson Problem  0 0 0 12 190 0 0 600 400 0 14.189°
203 19007.981204580 Thomson Problem  0.000600343 0 0 12 191 0 0 603 402 0 13.977°
204 19199.540775603 Thomson Problem  0 0 0 12 192 0 0 606 404 0 14.291°
212 20768.053085964 Thomson Problem  0 0 0 12 200 0 0 630 420 0 14.118° geodesic sphere {3,5+}4,1
214 21169.910410375 Thomson Problem  0 0 0 12 202 0 0 636 424 0 13.771°
216 21575.596377869 Thomson Problem  0 0 0 12 204 0 0 642 428 0 13.735°
217 21779.856080418 Thomson Problem  0 0 0 12 205 0 0 645 430 0 13.902°
232 24961.252318934 Thomson Problem  0 0 0 12 220 0 0 690 460 0 13.260°
255 30264.424251281 Thomson Problem  0 0 0 12 243 0 0 759 506 0 12.565°
256 30506.687515847 Thomson Problem  0 0 0 12 244 0 0 762 508 0 12.572°
257 30749.941417346 Thomson Problem  0 0 0 12 245 0 0 765 510 0 12.672°
272 34515.193292681 Thomson Problem  0 0 0 12 260 0 0 810 540 0 12.335° geodesic sphere {3,5+}3,3
282 37147.294418462 Thomson Problem  0 0 0 12 270 0 0 840 560 0 12.166° geodesic sphere {3,5+}4,2
292 39877.008012909 Thomson Problem  0 0 0 12 280 0 0 870 580 0 11.857°
306 43862.569780797 Thomson Problem  0 0 0 12 294 0 0 912 608 0 11.628°
312 45629.313804002 Thomson Problem  0.000306163 0 0 12 300 0 0 930 620 0 11.299°
315 46525.825643432 Thomson Problem  0 0 0 12 303 0 0 939 626 0 11.337°
317 47128.310344520 Thomson Problem  0 0 0 12 305 0 0 945 630 0 11.423°
318 47431.056020043 Thomson Problem  0 0 0 12 306 0 0 948 632 0 11.219°
334 52407.728127822 Thomson Problem  0 0 0 12 322 0 0 996 664 0 11.058°
348 56967.472454334 Thomson Problem  0 0 0 12 336 0 0 1038 692 0 10.721°
357 59999.922939598 Thomson Problem  0 0 0 12 345 0 0 1065 710 0 10.728°
358 60341.830924588 Thomson Problem  0 0 0 12 346 0 0 1068 712 0 10.647°
372 65230.027122557 Thomson Problem  0 0 0 12 360 0 0 1110 740 0 10.531° geodesic sphere {3,5+}4,3
382 68839.426839215 Thomson Problem  0 0 0 12 370 0 0 1140 760 0 10.379°
390 71797.035335953 Thomson Problem  0 0 0 12 378 0 0 1164 776 0 10.222°
392 72546.258370889 Thomson Problem  0 0 0 12 380 0 0 1170 780 0 10.278°
400 75582.448512213 Thomson Problem  0 0 0 12 388 0 0 1194 796 0 10.068°
402 76351.192432673 Thomson Problem  0 0 0 12 390 0 0 1200 800 0 10.099°
432 88353.709681956 Thomson Problem  0 0 0 24 396 12 0 1290 860 0 9.556°
448 95115.546986209 Thomson Problem  0 0 0 24 412 12 0 1338 892 0 9.322°
460 100351.763108673 Thomson Problem  0 0 0 24 424 12 0 1374 916 0 9.297°
468 103920.871715127 Thomson Problem  0 0 0 24 432 12 0 1398 932 0 9.120°
470 104822.886324279 Thomson Problem  0 0 0 24 434 12 0 1404 936 0 9.059°

According to a conjecture, if Thomson Problem , p is the polyhedron formed by the convex hull of m points, q is the number of quadrilateral faces of p, then the solution for m electrons is f(m): Thomson Problem .[clarification needed]

References

Notes

Tags:

Thomson Problem Mathematical statementThomson Problem Known exact solutionsThomson Problem GeneralizationsThomson Problem Solution algorithmsThomson Problem Relations to other scientific problemsThomson Problem Configurations of smallest known energyThomson ProblemAtomic modelCoulomb's lawElectronElectrostatic potential energyJ. J. ThomsonPlum pudding modelUnit sphere

🔥 Trending searches on Wiki English:

Mikel ArtetaKeffiyehSalman RushdieNicholas Galitzine2024 Indian general election in BiharAndré Villas-BoasBruce WillisIranSandra OhBreaking BadThe SimpsonsAdolf HitlerBridgertonLuca GuadagninoMaadhavi LathaAnunnakiMark the EvangelistNational Basketball AssociationSexProject 2025Kobe BryantCloud seedingJohn BlackthorneVasuki indicusCold WarMatty Healy2022 NFL draftXXXTentacionPremier LeagueThe Masked Singer (American TV series) season 11ThailandEiza GonzálezKylian MbappéEliot SumnerMexicoFallout 4Stewart ButterfieldKaya ScodelarioItalyDune (novel)List of European Cup and UEFA Champions League finalsArnold SchwarzeneggerGigi HadidMinouche ShafikJake Paul vs. Mike TysonInterstellar (film)Russell WilsonDrake BellSylvester StalloneShōgun (novel)Telegram (software)DownloadFahadh FaasilIndian National Developmental Inclusive AllianceJoaquin PhoenixOnlyFansEverton F.C.Black holeMarlon Brando2024 Croatian parliamentary electionXXXX GoldBaldwin IV of JerusalemNaslen K. GafoorDan Schneider2024 Andhra Pradesh Legislative Assembly election2024 NBA playoffsSerie AFeyenoordOperation SandblastNATOList of countries by GDP (nominal) per capitaAnne HecheLiam NeesonCaitlyn JennerBubbling Under Hot 100🡆 More