Rotzo Formation

The Rotzo Formation (also known in older literature as the Noriglio Grey Limestone Formation) is a geological formation in Italy, dating to roughly between 192 and 186 million years ago and covering the Pliensbachian stage of the Jurassic Period in the Mesozoic Era.

Has been traditionally classified as a Sinemurian-Pliensbachian Formation, but a large and detailed dataset of isotopic 13C and 87Sr/86Sr data, estimated the Rotzo Formation to span only over the Early Pliensbachian, bracketed between the Jamesoni-Davoei biozones, marked in the Loppio Oolitic Limestone–Rotzo Fm contact by a carbon isotope excursion onset similar to the Sinemu-Pliens boundary event, while the other sequences fit with the a warm phase that lasts until the Davoei biozone. The Rotzo Formation represented the Carbonate Platform, being located over the Trento Platform and surrounded by the Massone Oolite (marginal calcarenitic bodies), the Fanes Piccola Encrinite (condensed deposits and emerged lands), the Lombadian Basin Medolo Group and Belluno Basin Soverzene Formation (open marine), and finally towards the south, deep water deposits of the Adriatic Basin. The also Pliensbachian Aganane Formation of Morocco represents a regional equivalent, both in deposition and faunal content.

Rotzo Formation
Stratigraphic range: Early Pliensbachian
~192–187 Ma
Rotzo Formation
The Cimon del Latemar outcrop represents the internal lagoon of a fossil carbonate platform
TypeGeological formation
Unit ofCalcari Grigi Group
Sub-unitsTovel Member
UnderliesMassone Oolitic Limestone
Overlies
  • Monte Zugna Formation
  • Loppio Oolitic Limestone
AreaTrento Platform
Thickness250 m
Lithology
PrimaryLithified gray silty marl, gray grainstone, bioturbated/intraclastic/ooidal gray wackestone, mud banks and sand deposits.
OtherLight-grey to yellowish-grey packstone with oolites, bioclasts, algal lumps, pellets, dasycladacean algae, foraminifera, lituolids, and miliolids
Location
LocationVicenza Province: Trentino-Alto Adige, Southern Alps
Coordinates45°42′N 11°06′E / 45.7°N 11.1°E / 45.7; 11.1
Approximate paleocoordinates32°06′S 16°42′E / 32.1°S 16.7°E / -32.1; 16.7
RegionVeneto
CountryRotzo Formation Italy
Type section
Named forRotzo
Rotzo Formation is located in Italy
Rotzo Formation
Rotzo Formation (Italy)

Fossil prosauropod tracks have been reported from the formation. This formation was deposited within a tropical lagoon environment, similar to modern Bahamas which was protected by oolitic shoals and bars from the open deep sea located to the east (Belluno Basin) and towards the west (Lombardia Basin). It is characterized by a rich paleontological content. It is notable mostly thanks to its great amount of big aberrant bivalves, among which is the genus Lithiotis, described in the second half of the nineteenth century. The unusual shape of Lithiotis and Cochlearites shells, extremely elongated and narrow, characterized by a spoon-like body space placed in a high position, rarely preserved, seems to suggest their adaptation to soft and muddy bottoms with a high sedimentation rate. The Bellori outcrop displays about 20 m of limestones with intercalated clays and marls rich in organic matter and sometimes fossil wood (coal) and amber. The limestones are well stratified, with beds 10 cm to more than one metre thick, whereas the clayey levels range between 3 and 40 cm in thickness.

Amoebae

The presence of the families Centropyxidae and Difflugiidae testifies the presence of a mixed marine-terrestrial depositional system, lacking large bodies of water.

Genus Species Location Material Notes Images

Centropyxis

  • Centropyxis sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Centropyxidae inside Arcellinida.

Rotzo Formation 
Extant Example of the Genus Centropyxis

Difflugia

  • Difflugia sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Rotzo Formation 
Extant Example of the Genus Difflugia

Pontigulasia

  • Pontigulasia sp.

Tonezza del Cimone

Calcareous Skeleton

A testate amoebae, member of the family Difflugiidae inside Arcellinida.

Rotzo Formation 
Extant Example of the Genus Pontigulasia


Invertebrates and mollusks

Microfossils of the Rotzo Formation consist of benthic foraminifera, calcareous algae, Ostracoda and coprolites. Foraminifera are mainly benthic agglutinated species belonging to the superfamily Lituolacea (suborder Textulariina), while lamellar and porcellaneous-walled species are very rare. The bivalve Opisoma excavatum is very common.

Sponges

Genus Species Stratigraphic position Material Notes Images

Chaetetes

  • Chaetetes (Pseudoseptifer) waehneri
  • Lancia refuge
  • Alpe Alba
  • Col Santo

Colonial Imprints

A Chaetetidan Demosponge, member of Chaetetinae. Monospecific assamblages with encrusting and symbiont forms are found abundantly on lagoonal facies, distributed in several stratigraphic horizons.

Rotzo Formation 
Specimen of the same genus

Branchipods

Genus Species Stratigraphic position Material Notes Images

Gibbirhynchia

  • Gibbirhynchia curviceps
  • Sospirolo
  • Isolated Shells

A Rhynchonellidan brachiopoda, member of Gibbirhynchiinae. Unusual genus in the Mediterranean region, more common on NW Europe

Linguithyris

  • Linguithyris aspasia
  • Ballino
  • Sospirolo
  • Isolated Shells

A Terebratulidan brachiopoda, member of Nucleatidae. Typical Mediterranean region taxon in the Pliensbachian

Liospiriferina

  • Liospiriferina obtusa
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Rotzo Formation 
Specimen of the same genus

Lychnothyris

  • Lychnothyris rotzoana
  • Sette Comuni
  • Erbezzo
  • Isolated Shells

A Terebratulidan brachiopoda, member of Plectoconchidae. Typical Mediterranean region taxon in the Pliensbachian, the main Branchiopod associated with the Lithiotids facies

Prionorhynchia

  • Prionorhynchia? flabellum
  • Cortina d'Ampezzo
  • Sospirolo
  • Isolated Shells

A spiriferidan brachiopoda, member of Spiriferinidae. Typical Mediterranean region taxon in the Pliensbachian

Bivalves

The Rotzo Formation is known mostly due to its massive bivalve associations of the genera Lithiotis, Cochlearites and Lithioperna that extended all along the Pliensbachian Trento Platform forming mass accumulations of specimens that formed Reef-Like structures. This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers. All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic. This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna, restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups. This sections formed various kinds of ecosystems on the Trento platform, where it appeared in branched corals filled with (Spongiomorpha), Domal corals (Stromatoporida), tubular corals, Styllophyllidae corals, unidentified Cerioidea colonial corals, regular echinoid debris, sponges, and the solitary coral Opelismilia sp., with also aggregated snail shells.

Genus Species Stratigraphic position Material Notes Images

Cochlearites

  • Cochlearites loppianus
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimen

An oyster, member of Plicatostylidae inside Ostreida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas.

Eomiodon

  • Eomiodon serradensis
  • Eomiodon baroni
  • Eomiodon gardeti
  • Eomiodon vulgaris
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Neomiodontidae inside Veneroidei. The so-called Eomiodon horizon represents the lower Rotzo Formation, composed of organic-rich marlstones with abundant specimens of this genus, typical of stressed environment with low salinity. This genus considered an opportunistic shallow infaunal suspension feeder, and the marker genus for brackish environments.

Gervillia

  • Gervillia buchi
  • Gervillia spp.
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Isolated Shells

An Oyster, member of Bakevelliidae inside Pteriida. Found on greater accumulations on lower shale-dominated levels

Gervilleioperna

  • Gervilleioperna ombonii
  • Gervilleioperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida. On the Rotzo formation this genus become abundant along rootlets, indicative of a very shallow and restricted lagoon or marsh environment.

Lithioperna

  • Lithioperna scutata
  • Lithioperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. This genus was found to be a bivalve with a byssate juvenile stage that developed different modes of life on the adulthood depending on the individual density and bottom firmness.

Lithiotis

  • Lithiotis problematica
  • Lithiotis sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv
  • Isolated Shells
  • Mass Accumulations of specimens

An oyster, member of Plicatostylidae inside Ostreida. It is the major Bivalve identified on the formation, and the genus that gives the name to the Lithiotis fauna. Large, large and aberrant bivalves present on mostly of the Trento Platform. Its accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds.

Mytiloperna

  • Mytiloperna sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

An oyster, member of the family Malleidae inside Ostreida.

Opisoma

  • Opisoma excavatum
  • Opisoma menchikoffi
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, member of Astartidae inside Carditida. Is considered a genus that evolved from shallow burrowing ancestors, becoming a secondarily semi-infaunal edgewise recliner adapted to photosymbiosis.

Pachygervillia

  • Pachygervillia anguillaensis
  • Pachygervillia taramellii
  • Vaio dell’Anguilla
  • Vajo del Paradiso
  • Val di Sella
  • Viote section

Isolated Shells

An oyster, member of Plicatostylidae inside Ostreida.

Pachyrisma

  • Pachyrisma spp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Isolated Shells

A clam, member of Megalodontidae inside Megalodontida.

Pseudopachymytilus

  • Pseudopachymytilus mirabilis
  • Pseudopachymytilus sp.
  • Vaio del Paradiso
  • Bellori
  • Vaio dell'Anguilla
  • Campodalbero
  • Pasubio
  • Albaredo
  • Giazzera
  • Valgola
  • Valbona
  • Rotzo
  • Mezzaselv

Isolated Shells

A clam, incertae sedis inside Pterioida. On the Rotzo formation this byssate bivalve indicates a shallow subtidal or intertidal environment.

Ammonoidea

Genus Species Stratigraphic position Material Notes Images

Charmasseiceras

Charmasseiceras sp.

Serrada (Folgaria, Trento)

Shells of different sizes.

An ammonite of the family Schlotheimiidae. A very rare genus on the layers of the formation, being found only a few specimens.

Fuciniceras

  • Fuciniceras suejense
  • Fuciniceras portisi

Shells of different sizes.

An Ammonite of the Family Hildoceratidae

Rotzo Formation 
Fuciniceras

Juraphyllites

Juraphyllites libertus

Contrada Ronchi (Recoaro Terme, Vicenza)

Shells of different sizes.

Type member of the family Juraphyllitidae. It is the most abundant Ammonite found on the Rotzo Formation

Rotzo Formation 
Juraphyllites (G)

Partschiceras

Partschiceras anonimum

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Phylloceratidae.

Protogrammoceras

  • Protogrammoceras gr. celebratum-italicum
  • Protogrammoceras isseli
  • Protogrammoceras sp.
  • Calcari a Cefalopodi (Induno Olona)
  • Monte Baldo

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

Ugdulenaia

Ugdulenaia cf. ugdulenai

  • Calcari a Cefalopodi (Induno Olona)

Shells of different sizes.

An Ammonite of the family Hildoceratidae.

Gastropoda

Genus Species Stratigraphic position Material Notes Images

Anticonulus

Anticonulus acutus

Certosa di Vedana

Shells

A marine gastropod (Top Snail) of the Family Trochidae inside Trochoidea.

Aptyxiella

  • Aptyxiella spp.
  • Bellori
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Nosellari
  • Chiesa
  • Carbonare
  • Osteria alla Stanga
  • Between Chiesa S.Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Shells

A marine gastropod (snail), member of Nerinellidae inside Nerineoidea.

Ataphrus

  • Ataphrus (Ataphrus) latilabrus
  • Ataphrus (Ataphrus) cordevolensis

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Ataphridae inside Trochoidea.

Austriacopsis

Austriacopsis austriaca

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Fissurellidae inside Fissurelloidea.

Discohelix

Discohelix excavata

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Discohelicidae inside Vetigastropoda.

Rotzo Formation 

Eucyclidae

Eucyclidae Indeterminate

Certosa di Vedana

Shells

A marine gastropod (snail) of the Family Eucyclidae inside Seguenzioidea.

Eucyclus

Eucyclus (Lokuticyclus) kericserensis

Certosa di Vedana

Shells

A marine gastropod (snail), type genus of the Family Eucyclidae inside Seguenzioidea.

Rotzo Formation 

Emarginula

Emarginula (Emarginula) vadanaei

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Fissurellidae inside Fissurelloidea.

Rotzo Formation 

Globularia

Globularia sp.

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Ampullinidae inside Campaniloidea.

Rotzo Formation 

Guidonia

Guidonia pseudorotula

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Trochonematidae inside Murchisoniina.

Neritopsis

  • Neritopsis fabianii
  • Neritopsis spp.
  • Certosa di Vedana
  • Bellori

Shells

A marine gastropod (snail), type genus of the family Neritopsidae inside Cycloneritimorpha.

Plectotrochus

Plectotrochus sp.

Certosa di Vedana

Shells

A marine gastropod (Top snail) of the family Trochidae inside Trochoidea.

Proacirsa

Proacirsa (Schafbergia) crenata

Certosa di Vedana

Shells

A marine gastropod (snail) of the family Gordenellidae inside Allogastropoda.

Pseudonerinea

Pseudonerinea terebra

Tonezza del Cimone

Shells

A marine gastropod (snail) of the family Pseudonerineidae inside Nerineoidea.

Pseudorhytidopilus

Pseudorhytidopilus detonii

Certosa di Vedana

Shells

A marine gastropod (limpet) of the family Acmaeidae inside Patellogastropoda.

Tretospira

Tretospira tridentina

Tonezza del Cimone

Shells

A marine gastropod (periwinkle) of the family Purpurinidae inside Littorinoidea.

Echinoidea

Genus Species Stratigraphic position Material Notes Images

Polydiadema

  • Polydiadema depressum
  • Monte Roite

Two specimens (MCV.20/02 and MCV.20/03)

An Emiratiidae Phymosomatoidan. This Echinoids are recovered from a marginal marine layer, with abundant bivalves, gastropods, small corals, often found in concentrations due to tempestites.

Thylacocephala

Genus Species Stratigraphic position Material Notes Images

Rugocaris

  • Rugocaris indunensis
  • Calcari a Cefalopodi (Induno Olona)

Medium-sized bivalved carapace

A Concavicaridan Thylacocephalan. This specimen is a rather rare case where there was the discovery of a Thylacocephalan specimen in a rock deposed in a well oxygenated environment, while other finds come mostly from anaerobic environments. Rugocaris lived in an epibathyal environment.

Crustacea

Genus Species Stratigraphic position Material Notes Images

Klieana

Klieana sp.

Tonezza del Cimone.

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The earliest record of the genus, the next youngest records of the genus are from Middle Jurassic sequences of France and Great Britain.

Limnocythere

Limnocythere sp.

Tonezza del Cimone.

Valves

An Ostracodan of the family Limnocytherinae inside Cytheracea. High probability to be a new species of Limnocythere since the authors know of no other with similar posterolateral sulcation.

Phlyctisoma

Phlyctisoma cf.sinemuriana

Valbona Area.

Slightly deformed Exuvia

An Erymid Decapodan Crustacean common on in mediterranean rocks. With a rostrum about 1.3 cm long and the cephalic part of carapace about 2.5 cm the specimen probably reached a total length between 9-10 cm, being one of the largest specimens belonging to this genus. Frequent association with Thalassinoides burrows.

Phraterfabanella

Phraterfabanella tridentinensis

Tonezza del Cimone.

Valves

An Ostracodan of the family Cytherideidae inside Cytheracea. The assemblage is dominated (>95%) by this taxon. It is a rather Medium-sized Ostracodan and markedly sexually dimorphic (males more elongate and more subrectangular versus shorter, more inflated and more subtriangular females). it is likely that the palaeoenvironment was somewhat "stressed" and probably influenced by Salinity, where this genus would adapt better that Other Ostracodans (is related to the modern euryhaline species, Cyprideis torosa).

Annelida

Genus Species Stratigraphic position Material Notes Images

Schistomeringos

  • Schistomeringos expectatus
  • Between Ferrazza and Campodalbero
  • Between Nosellari and Dazio
  • Between Virti and Osteria alla Stanga
  • Between Chiesa S. Martino and Zaffoni

Isolated scolecodonts

A polychaete of the family Dorvilleidae. Unlike the modern counterparts that live in deeper environments, this species is found linked with shallow marine facies

Rotzo Formation 
Extant specimen of the same genus

Invertebrate ichnofossils

In the Western Venetian Prealps a shallow-water, oceanic carbonate platform system, the Trento platform, developed on the Early Jurassic, producing a large succession of massive to well-bedded white Limestones, several 100 m (330 ft) thick that are part of the Calcari Grigi Group, where the Rotzo Formation is the Upper Member. On the local limestone of the Rotzo Formation deep burrowing is a very common type of biogenic activity, as is shown due to the presence of a large characteristic network of burrows which reach down to the lagoonal, marly-clayey assigned strata, suggesting intense bioturbation by large unknown organisms, perhaps giant decapod crustaceans (Probably members of the family Erymidae), although, the burrows found are not closely related to the ones of Shrimps or other decapods, but resemble those of Stomatopoda and Malacostraca. Other includes abandoned burrows, vertical biogenic action and infilling on the sea substrate.

Genus Species Stratigraphic position Material Notes Images

Asteriacites

  • Asteriacites lumbricalis
  • Asteriacites isp.

Coste dell’Anglone dinosaur ichnosite

Star-shaped impressions

An ichnogenus that represents the resting trace resting activity of sea stars (Asteroidea) and brittle stars (Ophiuroidea). The recovered from the Rotzo formation are probably from specimens trapped on tidal changes.

Chomatichnus

  • Chomatichnus wegberensis

Campomolon, Valbona

Vertical burrows with preserved entrances

It is difficult to suggest this ichnogenus because on the Formation the vertical and lined burrow with a deep central crater typical of Chomatichnus is never preserved. It resemble described burrows of endobenthic thalassinidean decapods, specially Callianassa subterranea of modern North Sea, Callianassa major, Callianassa californensis or Upogebia pugettensis. It can be also Serpulidae Polychaetan burrows.

Chondrites

  • Chondrites isp.

Campomolon, Valbona

Burrowing and track Ichnofossils

In the Rotzo Formation Ophiomorpha irregulaire local specimens the walls are extensively reworked by small, secondary burrowers assigned to the ichnogenus Chondrites. Interpreted as the feeding burrow of a sediment-ingesting animal.

Rotzo Formation 
Chondrites

Glossifungites

  • Glossifungites isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

On the local waters during the Lower Jurassic, water motion due to the hurricane action truncated many mounds causing changes on the deposition on the sea-floor and inducing various phases of substrate infillings with carbonate mud, fine-to coarse-grained skeletal debris and fecal pellets. They are assigned to Priapulida, Serpulidae, Siboglinidae, Sabellidae or even Oweniidae.

Ophiomorpha

  • Ophiomorpha irregulaire
  • cf. Ophiomorpha nodosa
  • Ophiomorpha isp. A
  • Ophiomorpha ? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Two major types of Ophiomorpha where recovered, a smaller one from 2–4 cm in size and the larger one from 5–15 cm in diameter. They are complex burrow systems lined with pelletoidal sediments generally infilled by coarse-grained detritus. Specimens Seems partly destroyed by weathering.

Rotzo Formation 
Ophiomorpha

Skolithos

  • Skolithos isp.

Campomolon, Valbona

Infilled abandoned burrows by coarse-grained skeletal debris

Ichnofossils done by organisms advancing along the bottom surface. Very narrow, vertical or subvertical, slightly winding unlined shafts filled with mud. Locally, post hurricane burrows are found in fine-grained tempestite beds and muddy layers and they are Domichnia, Fodinichnia and Chemichnia.

Rotzo Formation 
Skolithos

Thalassinoides

  • Thalassinoides suevicus
  • Thalassinoides? isp. B

Campomolon, Valbona

Burrowing and track Ichnofossils

Thalassinoides suevicus has been found on mostly of the middle-upper part of the Rotzo Formation associated with muddy deposits. It ranges from 2–5 cm to 6–10 cm and the larger ones from 10 to 16 cm. Y-shaped tunnels that seen in cross-section reveal circular walls made of pelletoidal grainstone, being more probably a fodichnia of a burrowing animal. A few ichnofossils include simple cylindrical tubes up to 80 cm in length, that resemble crustacean described in Seychelles.

Rotzo Formation 
Thalassinoides

Vertebrata

Chondrichthyes

Episodic surficial bioturbation is common on the Rotzo Formation, due to invertebrates or fishes which alter intensely but rapidly the substrate for many cm in depth. It this case the Bioturbation is assigned to mollusc predatory Chondrichthyes, such as Hybodontidae and Heterodontidae. It also resembles present day flat angel sharks or Squatinidae and Guitarfish such as Rhinobatos.

Genus Species Stratigraphic position Material Notes Images

Chimaeriformes

Chimaeriformes Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Teeth
  • Scales

Uncertain Holocephalii remains

Hybodus

Hybodus sp.

Campiluzzi Tunnel, west of Monte Buso.

  • Teeth
  • First dorsal fin spine

A shark, type genus of the family Hybodontidae inside Hybodontiformes. A very prolific genus, found mostly on open marine units.

Orthacodus

Orthacodus sp

  • Calcari a Cefalopodi (Induno Olona)

Teeth

A shark, type genus of the family Orthacodontidae inside Synechodontiformes. The teeth recovered resemble Orthacodus longidens, and are related to an epibathyal environment, near to a major carbonate platform shelf.

Actinopterygii

Unidentified fish scales are known from the formation.

Genus Species Stratigraphic position Material Notes Images

Lepidotes

Lepidotes sp.

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

A member of the family Semionotidae inside Neopterygii.

Pachycormiformes

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Actinopterygii fishes, the oldest record of the family

Pholidophoriformes

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Complete Specimen
  • Isolated Teeth
  • Isolated Scales

Teleostei fishes, with genera know to form large Fish schools.

Pycnodontiformes

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

Teleostei Fishes of small size, related to lagoonar environments

Semionotiformes

Indeterminate

Campiluzzi Tunnel, west of Monte Buso.

  • Isolated Teeth
  • Isolated Scales

The assigned teeth were found on i layer referred to a carbonate platform nearshore section, probably a lagoonar environment, where this and marine crocodrylomorphs lived.

Rotzo Formation 

Crocodyliformes

Genus Species Location Material Notes Images

Teleosauridae?

Indeterminate

Monte Pasubio

Isolated Teeth

A Thalattosuchian Mesoeucrocodylian. It was cited the presence of fragmentary and poorly preserved remains of “Teleosauridae?”. There are at least two morphotypes, implying two genera or two species. The fossils were found on lagoonal deposits.

Rotzo Formation 
Example of Thallatosuchian, Macrospondylus

Dinosaurs

On the Inter-supratidal levels show that on the Rotzo Formation the Tracksites were rarely hit by Storm Waves. Bella Lastra Tracksite recovers this environment, where the shales present (Where Fish & Crocodrylomorph Remains where found) are filled with plant roots, pollen grains, spores, freshwater ostracodes and the bivalve Eomiodon. This was deposited mostly on a Lagoonar environment with abundant shed vegetation. The main local Track record recovers specially Theropoda and Sauropoda, where the Sauropods are the most abundant tracks present (70%), moving the Otozum-like Sauropodomorphs of lower levels, with the climate changing from arid to humid. The Coste dell’Anglone ichnosite is considered as derived from semi-arid tidal flat deposits, due to the abundance of Cheirolepidiaceae Pollen. As the Pliensbachian Trento Platform is considered to be formed by a channelized barrier formed by sand, with reiterate tide emersions. The dinosaurs living here probably trampled on the subtidal flats looking for fishes trapped on tidal-derived ponds.

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Dinosaurs of the Rotzo Formation
Genus Species Location Member Material Notes Images

Anchisauripus

  • Anchisauripus sp. A
  • Coste dell'Anglone tracksite

Tovel Member

Footprints

Theropod tracks, type member of the ichnofamily Anchisauripodidae, incertae sedis inside Neotheropoda. Probably related to Coelophysidae, such as Procompsognathus and Panguraptor or Coelophysoidea, such as Lophostropheus. All tracks were probably produced by individuals with the same functional anatomy of the hind foot.

Kayentapus

  • Kayentapus sp. A
  • Kayentapus sp. B
  • Coste dell'Anglone tracksite
  • Bella Lasta tracksite
  • Stol dei Campiluzzi tracksite

Tovel Member

Footprints

Theropod tracks, member of the ichnofamily Eubrontidae, incertae sedis inside Neotheropoda. Includes Kayentapus sp. assigned to Sinosaurus-alike Theropods, but on the Rotzo Formation include also Abelisauroid-like tracks, similar to the foot of the genus Velocisaurus. The tracks measure 30 cm long and have a distinctive robust digit III. The Coste dell´Anglone tracksite had a pes with the metatarsal III elongated, as found on Dilophosaurus.

Moyenisauropus

Moyenisauropus sp.

  • Marocche di Dro tracksite

Tovel Member

Footprints

Thyreophoran tracks, type member of the ichnofamily Moyenisauropodidae, incertae sedis inside Neornithischia. Is considered by some authors synonymous with the ichnogenus Anomoepus. The tracks adscribed share some morphological affinity with those referred to the Ankylosauridae, such as the ichnogenera Metatetrapodus and Tetrapodosaurus, and probably belonged to medium-sized Scelidosaurs or other kind of Thyreophorans. Include Specimens of up to 30 cm, suggesting +4 m long scelidosauroids.

Otozoum?

  • Otozoum? sp.
  • Marocche di Dro tracksite

Tovel Member

Footprints

Sauropodomorph tracks, member of the ichnofamily Otozoidae, incertae sedis inside Sauropodomorpha. A single trackway that strongly differs from the others found on the same tracksite. It wears morphological and morphometrical appearance that suggests relationships with a prosauropod trackmaker.

Parabrontopodus

Parabrontopodus sp. A Parabrontopodus sp. B

  • Marocche di Dro tracksite
  • Bella Lasta tracksite

Tovel Member

Footprints

Sauropod tracks, type member of the ichnofamily Parabrontopodidae, incertae sedis inside Sauropodomorpha. Tracks from large basal members of Sauropoda. The larger tracks comprise elliptic pes (L=70 cm; W=50 cm) and subcirluar manus prints (L=33 cm; W=30 cm), what are among the largest known dinosaur tracks of the lower jurassic. While nearly destroyed, the Tracks resemble the foot of the genus Barapasaurus. There is a type B of Parabrontopodus slightly smaller that resemble the genus Vulcanodon.

Flora

Rotzo Formation nearby land hosted Bahamian-type biomes (Gold Rock Beach in the picture) with nearby "Taxodium swamp"-like coniferous associations dominated by the Pagiophyllum producer

The Rotzo Formation was deposited on a Lagoon on the emerged Trento Platform, leading to a well preserved fossil flora record, collected and studied since the 19th century. The great level of floral fossilization has even allow to discovery fossil amber on the Bellori section. This amber has allowed to determine that the environment was a shallow tropical lagoon, only a few metres deep, closed seawards by oolitic shoals and bars. This levels are dominated by a high abundance of Classopollis sp. (Cheirolepidiaceae), associated with dry and wet climates in coastal areas. The abundance of this group of conifers is also proven by the high presence of cuticles of Pagiophyllum cf. rotzoanum. Beyond this genera, spores are highly diversified, including from Sphenophyta, Selaginellales to Ferns, with abundance (more than 50%) of trilete spores (Deltoidospora), what suggest a good freshwater availability corresponding to a wet climate, proven also by the presence of aquatic miospores of algae such as Botryococcus and Pseudoschizaea. The climate was arid on some seasons with monsoon months. The abundance of marine fauna on this sediments, including fragments of corals, bryozoans, bivalves, echinoids, and foraminifera, suggest transport from brackish lagoons and marshes, probably occurred during storm events. Overall data points to a marshy and/or submerged paleoenvironment, comparable to the present-day Taxodium swamp or cypress swamp and a Bahamian-type marine environment in a rather wet monsoonal climate as in the modern southeastern Asia.

Amber

The Rotzo Formation records one of the few Early Jurassic assamblages with Amber in the world, the nicknamed "Bellori amber" found near the village of the same name. Made mostly of small droplets of less than 1 mm with exceptionally preserved morphology its likely the amber producing plants were likely not stressed or affected by disease. Due to the small size animal inclusion have not been found. However various plant materials, identified “mummified wood” and wood tissue are known. Additionally large amounts of Circumpolles Cheirolepidiaceous pollen, and occasional freshwater algae Pseudoschizaea remains are included. Several cuticle fragments are attributed to the araucariaceous or Hirmeriellaceae genus Pagiophyllum. Those lived on a coastal and wet palaeoenvironment similar to the present-day Taxodium swamps with monsoonal seasons as in the modern southern Asia.


Palynology

Genus Species Location Material Notes

Accincitisporites

Accincitisporites sp.

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Alisporites

Alisporites sp.

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Voltzia (Willsiostrobus) and Corystospermales

Aratrisporites

Aratrisporites sp

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Lycophytes, in situ in Cyclostrobus, Lycostrobus and Annalepis zeiller.

Auritulinasporites

Auritulinasporites scanicus

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Baculatisporites

  • Baculatisporites comaumensis
  • Baculatisporites sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Calamospora

Calamospora sp

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Calamitaceae in the Equisetales.

Camarozonosporites

Camarozonosporites cf. heskemensis

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Cabochonicus

cf. Cabochonicus carbunculus

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Chasmatosporites

Chasmatosporites sp

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Zamiaceae in the Cycadales. It is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius.

Classopollis

  • Classopollis sp
  • Classopollis classoides
  • Classopollis meyeriana
  • Classopollis torosus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Concavisporites

  • Concavisporites crassexinius
  • Concavisporites sp A
  • Concavisporites sp B
  • Concavisporites sp C
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Cycadopites

  • Cycadopites sp
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

Affinities with the family Cycadaceae and Bennettitaceae.

Deltoidospora

  • Deltoidospora minor
  • Deltoidospora toralis
  • Deltoidospora sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Densosporites

  • Densosporites fissus
  • Densosporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Eucommiidites

  • Eucommiidites troedssoni

Bellori, Ponte Basaginocchi, Vajo dell’Anguilla

Pollen

Type pollen of the Erdtmanithecales, related to the Gnetales.

Foveosporites

  • Foveosporites visscheri
  • Foveosporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores.

Affinities with Selaginellaceae

Granuloperculatipollis

  • Granuloperculatipollis sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida.

Horstisporites

Horstisporites harrisii

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Hughesisporites

cf. Hughesisporites orlowskae

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the Selaginellaceae in the Lycopsida.

Ischyosporites

  • Ischyosporites variegatus
  • Ischyosporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Leptolepidites

  • Leptolepidites cf. major
  • Leptolepidites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Limbosporites

  • Limbosporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida.

Lycopodiacidites

  • Lycopodiacidites cerebriformis
  • Lycopodiacidites regulatus
  • Lycopodiacidites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the Ophioglossaceae in the Filicales.

Lycopodiumsporites

  • Lycopodiumsporites semimuris
  • Lycopodiumsporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Monosulcites

  • Monosulcites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Karkeniaceae and Ginkgoaceae in the Ginkgoales.

Perinopollenites

  • Perinopollenites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Cupressaceae in the Pinopsida.

Pinuspollenites

  • Pinuspollenites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the family Pinaceae in the Pinopsida.

Retitriletes

  • Retitriletes semimuris
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Retusotriletes

  • Retusotriletes sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Lycopodiaceae in the Lycopodiopsida

Skarbysporites

  • Skarbysporites puntii
  • Skarbysporites elsendoornii
  • Skarbysporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Schizosporis

  • Schizosporis cf. reticulatus
  • Schizosporis sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Cysts

Affinities with Chlorophyta

Spheripollenites

  • Spheripollenites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Pollen

Affinities with the Hirmeriellaceae in the Pinopsida

Tigrisporites

  • Tigrisporites jonkeri
  • Tigrisporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Todisporites

  • Todisporites minor
  • Todisporites cinctus
  • Todisporites sp.
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Affinities with the family Osmundaceae in the Polypodiopsida.

Trachysporites

  • Trachysporites fuscus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • BetweenChiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Spores

Incertae sedis; affinities with the Pteridophyta

Trileites

cf. Trileites murrayi

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Affinities with Selaginellaceae

Verrutriletes

cf. Verrutriletes compostipunctatus

  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla

Spores

Incertae sedis; affinities with the Pteridophyta

Vitreisporites

  • Vitreisporites pallidus
  • Bellori
  • Ponte Basaginocchi
  • Vajo dell’Anguilla
  • Between Pedescala and Castelletto
  • Between Ferrazza and Campodalbero
  • Dazio
  • Between Nosellari and Dazio
  • Between Carbonare and Nosellari
  • Buse and
  • Between Virti and Osteria
  • Between Chiesa S. Martino and Zaffoni
  • Between Boccaldo and Pozza
  • Rovereto
  • Leno di Terragnolo

Pollen

From the family Caytoniaceae in the Caytoniales.

Equisetales

Genus Species Location Material Notes Images

Equisetites

  • Equisetites bunburyanus
  • Equisetites veronensis
  • Roverè di Velo
  • Campo Fontana
  • Val d´Assa

Stems

Affinities with Equisetaceae. Related to humid environments, the stems of local Equisetopsids show a rather large grown cycle, like the Bamboo on the modern Southern Asia, implicating tall Plants influenced by a Tropical Climate.

Phyllotheca

  • Phyllotheca brongniartiana
  • Phyllotheca equisetiformis
  • Roverè di Velo

Leaf Whorl

Affinities with Phyllothecaceae inside Equisetales

Rotzo Formation 
Phyllotheca brongniartiana from the Rotzo Formation

Ferns

Genus Species Location Material Notes Images

Danaeites

  • Danaeites heeri
  • Danaeites brongniartiana
  • Rotzo
  • Val d´Assa
  • Bienterle
  • Selva di Progno

Fronds

Affinities with Marattiales inside Marattiopsida.

Dictyophyllum

  • Dictyophyllum sp.
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales.

Gleichenites

  • Gleichenites elegans
  • Roverè di Velo

Fronds

Affinities with Gleicheniaceae inside Polypodiopsida

Hymenophyllites

  • Hymenophyllites leckenbyi
  • Roverè di Velo

Fronds

Affinities with either Dicksoniaceae or Polypodiidae inside Polypodiopsida. Similar to the genus Coniopteris.

Laccopteris

  • Laccopteris rotzana
  • Rotzo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Marzaria

  • Marzaria paroliniana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Rotzo Formation 
Marzaria paroliniana from the Rotzo Formation

Matonidium

  • Matonidium rotzoana
  • Roverè di Velo

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Phlebopteris

  • Phlebopteris polypodioides
  • Val d´Assa

Fronds

Affinities with Matoniaceae inside Gleicheniales.

Protorhipis

  • Protorhipis asarifolia
  • Roverè di Velo

Fronds

Affinities with Dipteridaceae inside Gleicheniales. A rather lower Fern, with great resemblance with the modern genus Dipteris.

Seed Ferns

Genus Species Location Material Notes Images

Cycadopteris

  • Cycadopteris brauniana
  • Cycadopteris heerii
  • Cycadopteris heterophylla
  • Valle Zuliani
  • Rotzo
  • Roverè di Velo
  • Albaredo

Fronds

Affinities with Corystospermales inside Pteridospermopsida. On the Roverè di Velo collection, C. brauniana is the most common Frond found. The Fronds belong to medium to large arboreal Ferns.

Rotzo Formation 
Cycadopteris brauniana and Cycadopteris sp., both recovered from different locations of the Rotzo Formation

Cyclopteris

  • Cyclopteris minor
  • St. Bortolomeo

Fronds

Affinities with Cyclopteridaceae inside Pteridospermatophyta.

Dichopteris

  • Dichopteris rhomboidalis
  • Dichopteris paroliniana
  • Dichopteris angustifolia
  • Dichopteris visianica
  • Dichopteris micophylla
  • Roverè di Velo
  • Val d´Assa
  • Val Juliani
  • Val Salorno

Fronds

Affinities with Corystospermales inside Pteridospermopsida. Represents the largest "Seed Fern" Leaf in the fossil record, with leaves up to 70 cm, having an habit resembling the extant angiosperm Nypa fruticans.

Rotzo Formation 
Dichopteris visianica from the Rotzo Formation

Lomatopteris

  • Lomatopteris jurensis
  • Roverè di Velo

Fronds

Affinities with Cyclopteridaceae inside Pteridospermatophyta.

Rotzo Formation 
Lomatopteris jurensis from the Rotzo Formation

Pseudosagenopteris

  • Pseudosagenopteris angustifolia
  • Roverè di Velo

Leaflets

Affinities with Caytoniales inside Pteridospermopsida.

Sagenopteris

  • Sagenopteris reniformis
  • Sagenopteris goeppertiana
  • Sagenopteris nilssoniana
  • Roverè di Velo

Leaflets

Affinities with Caytoniaceae inside Caytoniales. There is a superficial doubt with the assignation to S. goeppertiana, and due to that Roverè di Velo specimen may be confirmed by comparing them with original Zigno's Material.

Rotzo Formation 
Sagenopteris nilssoniana from the Rotzo Formation

Bennettitales

Genus Species Location Material Notes Images

Otozamites

  • Otozamites bunburyanus
  • Otozamites veronensis
  • Otozamites vicentinus
  • Otozamites mattiellianus
  • Otozamites nathorstii
  • Otozamites feistmantelii
  • Otozamites molinianus
  • Otozamites massalongianus
  • Otozamites spp.
  • Roverè di Velo
  • Rotzo
  • Val d´Assa
  • M. Pernigotti
  • S. Bortolomeo

Pinnate leaf fragments

Affinities with Williamsoniaceae inside Bennettitales. Overall, the genus Otozamites is among the most abundant flora genus recovered on some of the levels of the Rotzo Formation, and also one of the most diversified. It belongs to arbustive Bennetites.

Rotzo Formation 
Otozamites bunburyanus from the Rotzo Formation

Pterophyllum

  • Pterophyllum venetum
  • Pterophyllum platyrachis
  • Roverè di Velo
  • Rotzo
  • Vall d´Assa
  • M. pernigotti
  • Scandolara

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ptilophyllum

  • Ptilophyllum grandifolium
  • Ptilophyllum triangulare
  • Ptilophyllum spp.
  • Roverè di Velo

Leaves

Affinities with Williamsoniaceae inside Bennettitales. Was previously ascribed by Guiscardi (Director of the Geology Department of the Napoles University between 1861 al 1885) to Pachypteris visianica and Cycadopteris brauniana.

Rotzo Formation 
Ptilophyllum grandifolium from the Rotzo Formation

Sphenozamites

  • Sphenozamites rossii
  • Sphenozamites spp.
  • Roverè di Velo

Leaflets

Affinities with Williamsoniaceae inside Bennettitales. Related with Cycad-like trees.

Weltrichia

  • Weltrichia sp.
  • Roverè di Velo

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales. Weltrichia is considered by some authors some kind of Bennetitalean Flower, putting that group on relationships with the Angiosperms.

Williamsonia

  • Williamsonia italica
  • Monte raut
  • Roverè di Velo

Bennettite "Flower"

Affinities with Williamsoniaceae inside Bennettitales.

Rotzo Formation 
Williamsonia italica from the Rotzo Formation

Zamites

  • Zamites goepperti
  • Zamites ribeiroanus
  • Zamites rotzoanus
  • Rotzo
  • M. pernigotti
  • S. Bortolomeo

Leaflets

Affinities with Bennettitales inside Cycadeoidopsida. This genus has been related with the more arboreal family Williamsoniaceae, although is more probably from a low arboreal to arbustive Bennetite.

Ginkgoopsida

Genus Species Location Material Notes Images

Trevisania

  • Trevisania furcellata

Val d´Assa

Leaves

Affinities with the genus Trichopitys, as probably a member of Karkeniaceae inside Ginkgoopsida, with strong resemblance with the genus Baiera, lumped in some papers as Baiera lindleyana.

Rotzo Formation 
Baiera a taxon that has been said to include Trevisania

Conifers

Genus Species Location Material Notes Images

Brachyphyllum

  • Brachyphyllum tropidimorphyrn
  • Brachyphyllum graciliforme
  • Brachyphyllum kendallianum
  • Brachyphyllum appropinquatum
  • Brachyphyllum praetermissum
  • Roverè di Velo
  • Pernigotti
  • Boca di Trappola
  • Rotzo
  • Valle Zulliani
  • Branched shoots
  • Isolated leaves

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. Brachyphyllum tropidimorphyrn shows close resemblance between African and Venetian conifers and its distribution suggests a lowland araucarian forest.

Rotzo Formation 
Brachyphyllum kendallianum from the Rotzo Formation

Dactylethrophyllum

  • Dactylethrophyllum peristictum
  • Scandolara

Branched shoots

Affinities with Cheirolepidiaceae inside Coniferales.

Desmiophyllum

  • Desmiophyllum zeillerianum
  • Desmiophyllum rigidum
  • Roverè di Velo
  • Valle Zuliani

Isolated leaves

A possible Conifer leaf. Was suggested to have affinities with Czekanowskiales, sometimes found inside Ginkgoopsida, yet recent finds of it associated with the cone genera Sphaerostrobus and Ourostrobus points to a coniferophyte affinity, maybe as a member of Palissyaceae.

Elatocladus

  • Elatocladus zignoi
  • Elatocladus veronensis
  • cf. Elatocladus sp.
  • Roverè di Velo
  • Val d´Assa
  • Rotzo

Branched shoots

Affinities with Cupressaceae inside Coniferales. Arboreal plants similar to the modern genus Cunninghamia

Rotzo Formation 
Elatocladus zignoi from the Rotzo Formation

Pagiophyllum

  • Pagiophyllum rotzoanum
  • Pagiophyllum vicentinum
  • Pagiophyllum veronense
  • Pagiophyllum magnipapillare
  • Pagiophyllum valdassense
  • Pagiophyllum robustum
  • Pagiophyllum revoltinum
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Pernigotti
  • Monte Carpani
  • Isolated Leaves
  • Branched Shoots
  • Cuticles

Affinities with Araucariaceae or Cheirolepidiaceae inside Coniferales. One of the specimens was assigned to Otozamites massalongianus, due to confusing the overlapping appearance and the Otozamites-like shape of the leaves of the apical portion of the main shoot.

Rotzo Formation 
Pagiophyllum rotzoanum from the Rotzo Formation

Pelourdea

  • Pelourdea megaphylla
  • Roverè di Velo
  • Val d´Assa
  • Rotzo
  • Scandolara
  • Squaranton
  • Bienterle
  • Isolated Leaves
  • Pollen Organ

Incertae sedis inside Coniferales, initially identified as "Yuccites schimperianus", suggested as a member of its own family, the "Pelourdeaceae". A hygrophytic riparian conifer with herbaceous or shrubby habit. Some specimens are difficult to identify.

Stachyotaxus

  • Stachyotaxus spp.
  • Valle Zuliani
  • Roverè di Velo

Branched shoots

Affinities with Palyssiaceae inside Coniferales. Extinct group conifer leaves with similarities with Sequoia or Amentotaxus. Maybe Includes the species "Taxites vicentina".

Rotzo Formation 
"Taxites vicentina"

Bibliography

Tags:

Rotzo Formation AmoebaeRotzo Formation Invertebrates and mollusksRotzo Formation VertebrataRotzo Formation FloraRotzo FormationAdriatic BasinAganane FormationFaunal stageGeological formationItalyJurassicMesozoic EraMya (unit)Pliensbachian

🔥 Trending searches on Wiki English:

Kepler's SupernovaDarién GapMichael J. FoxPSV EindhovenArne SlotMurder of Reena VirkDrake MayeSydney SweeneyKaty PerryList of European Cup and UEFA Champions League finalsMurder of Lauren GiddingsTyler BertuzziSri LankaElvis PresleyMartin Luther King Jr.Amy WinehouseDua LipaDonald SterlingNATOLuke PerryList of ethnic slursFranceWinston ChurchillScott PorterM. Night ShyamalanSamuel AlitoOnce Upon a Time in HollywoodJosé MourinhoChessXXXX GoldDan SchneiderICC Men's T20 World CupBBC World ServiceBenjamin FranklinYou Should Have LeftPuyallup peopleMS DhoniLiam NeesonGeorge LucasBillboard (magazine)Brighton & Hove Albion F.C.Jason RitterGeorgia (country)Los AngelesFlipkartArticle 370 of the Constitution of India2024 NFL draftCaitlyn JennerNetherlandsList of Stanley Cup championsBitcoinHTTP 404Kingdom of the Planet of the ApesCeline DionLuka DončićNancy Wilson (rock musician)Minnie RipertonThe BeatlesList of countries and dependencies by population2024 Formula One World ChampionshipMark ZuckerbergPearl JamJürgen KloppTeri Baaton Mein Aisa Uljha JiyaWatergate scandalMegan Thee StallionEmily BluntSolomon IslandsWestern SaharaKeanu ReevesKirsten DunstBill ClintonJennifer GarnerBreaking BadMamitha BaijuFeyenoordChernobyl disaster🡆 More