Nuscale Power

NuScale Power Corporation is a publicly traded American company that designs and markets small modular reactors (SMRs).

It is headquartered in Portland, Oregon. A 50 MWe version of the design was certified by the US Nuclear Regulatory Commission (NRC) in January 2023. The current scalable 77 MWe SMR VOYGR design was submitted for NRC review on January 1, 2023, and is currently about a third complete.

NuScale Power Corporation
Company typePublic
NYSESMR
IndustryNuclear power
Founded2007; 17 years ago (2007) in Corvallis, Oregon, U.S.
Founders
  • Paul G. Lorenzini
  • José Reyes
HeadquartersPortland, Oregon, U.S.
Key people
John Hopkins
(President & CEO)
ProductsSmall modular reactors
RevenueIncrease US$11.8 million (2022)
Decrease US$−142 million (2022)
Total assetsIncrease US$349 million (2022)
Total equityIncrease US$277 million (2022)
Number of employees
556 (2022)
Websitenuscalepower.com
Footnotes / references

NuScale's SMR designs employ 9 feet (2.7 m) diameter by 65 feet (20 m) high reactor vessels that use conventional cooling methods and run on low enriched uranium fuel assemblies based on existing light water reactor designs. Each module is intended to be kept in an underground pool and is expected to produce about 77 megawatts of electricity. Its coolant loop uses natural convection, fed from a large water reservoir that can operate without powered pumps.

NuScale had agreements to build reactors in Idaho by 2030, but this was cancelled in 2023 due to the estimated cost having increased from $3.6 billion to $9.3 billion for a 460 MWe power plant.

History

NuScale was founded based on research funded by the United States Department of Energy (DOE) and conducted by a team of nuclear scientists at Oregon State University and the Idaho National Laboratory. beginning in 2000. Oregon State's nuclear department had been developing passive water-circulation techniques for cooling in nuclear plants. DOE funded the research from 2000 to 2003.

The Oregon State team continued their work building a one-third scale test lab, while inheriting related patents from the university in 2007, in exchange for an equity stake. NuScale was founded that year. Its first funding round came in January 2008. It began seeking certification with the NRC in February 2008.

By 2011, NuScale had raised $35 million and had 100 employees in Portland; Richland, Washington; and Corvallis, Oregon. NuScale was the first to submit small reactor plans to the NRC and the first to gain approval. It was evaluated by a consortium of utility companies called Energy Northwest.

Funding difficulties and rebound

In January 2011, NuScale's largest investor, Kenwood Group, was investigated by the U.S. Securities and Exchange Commission (SEC) and later pleaded guilty to operating a Ponzi scheme. The SEC investigation was not related to Kenwood's dealings with NuScale, but Kenwood's assets were frozen just as NuScale was expecting additional funding. The company started making staffing and pay cuts as executives looked for new funding sources and most of the company's employees were laid off.

That September, NuScale obtained a loan to re-hire 60 employees. In October, Fluor Corporation acquired a majority interest in the company for $3.5 million and promised almost $30 million in working capital. According to The Energy Daily, Fluor's investment saved the company, which had been "financially marooned" by its prior investor. A separate agreement gave Fluor the rights to construct NuScale-based power plants.

In August 2012, Rolls-Royce Holdings said it would support NuScale's commercialization efforts and help it obtain funding from DOE's funding opportunity announcement. In December 2012, co-founder Paul G. Lorenzini was replaced by John Hopkins as CEO. It was not funded in the first DOE's round. In the second round in December 2013, NuScale won up to $226 million in "cost-sharing" funding to share the expense of obtaining government approval, through the SMR Licensing Technical Support program. This was followed by an agreement in May 2014 for up to $217 million in funding over a five-year period, whereby DOE would match private funding.

In September 2020 the U.S. Department of Energy reported that it had provided more than $400 million since 2014 to support the NuScale development and that of other earlier stage domestic SMR designs.

2022 launch as a public company

In December 2021 Fluor Corporation reported that it had invested over $600 million in NuScale since 2011, and that NuScale was expected to go public in 2022 with Fluor owning about 60% of the stock. In May 2022, NuScale completed a merger with the special-purpose acquisition company (SPAC), Spring Valley Acquisition Corp, raising $380 million of investment. NuScale Power Corporation then listed on the New York Stock Exchange.

Carbon Free Power Project, Idaho

In November 2014, NuScale announced it would build what it expected to be the first US SMR at the Idaho National Laboratory. The plant was for Utah Associated Municipal Power Systems (UAMPS), a subdivision of the State of Utah, on the Carbon Free Power Project (CFPP). UAMPS operates power plants in Wyoming, New Mexico, California, and Utah, selling to local utilities. The DOE could provide supporting funds of about $140 million/year over 10 years, awaiting more Congressional support.

The company submitted designs to the NRC in January 2017 for a 12 reactor power plant producing 570 MWe at a build cost under $3 billion. In 2020, DOE approved a $1.355 billion cost-share award.

As of 2021, 8 cities had withdrawn from CFPP. In July 2021, the proposal was downsized to 6 reactors, and the expected electricity price increased to $58/MWh (¢5.8/kWh).

In January 2023, CFPP approved a new Budget and Plan of Finance, establishing a target price of $89/MWh (¢8.9/kWh) after an estimated $30/MWh generation subsidy from the 2022 Inflation Reduction Act (IRA). The projected build cost had increased to $9.3 billion for 462 MWe generation capacity from $3.6 billion for 720 MWe in 2020. $4.2 billion of the cost would be covered by the DOE and IRA support, leaving $5.1 billion of acquisition and construction costs to be covered by UAMPS members.

In November 2023, UAMPS announced it was unlikely that the project would have enough subscription to continue due to cost increases, and UAMPS and NuScale jointly decided to cancel the project. POWER magazine reported that the project had received $232 million of DOE financial support by the time it was cancelled.

Other deployment history

In March 2012, NuScale signed an agreement with DOE that allowed NuScale and two partners to build and operate a NuScale-based nuclear power plant at a Savannah River site in South Carolina. The following month, Energy Northwest said it had no immediate plans to construct a nuclear power plant, but had evaluated all the available SMR technologies and identified NuScale as the best available option.

In July 2013, NuScale announced an effort to demonstrate NuScale reactors in the western United States, called Program WIN (Western Initiative for Nuclear), with plans to build the first NuScale-based power plant there by 2024.

In January 2018, the NRC agreed that the passive safety features allow NuScale's SMR design to operate safely without back-up power.

In August 2020, the NRC issued a final safety evaluation report, certifying the design as having met safety requirements.

In November 2021, NuScale announced its intent to build with Nuclearelectrica its first reactors in Romania by 2028.

In February 2022, NuScale and mining conglomerate KGHM announced a contract to construct an SMR in Poland by 2029. A 12-module, 924-MWe plant design may have an LCOE of $64/MWh (¢6.4/kWh). In April, Doosan Enerbility was contracted to begin manufacturing Power Module components. Doosan Enerbility expected to reach full-scale production at their plant in Changwon, South Korea, in the second half of 2023.

On 28 July 2022, the NRC announced it would certify NuScale's small modular reactor.

On 28 December 2022, Romanian company RoPower Nuclear contracted for Front-End Engineering and Design. The location is expected to be Doicesti. RoPower is a joint venture between Nuclearelectrica and Nove Power & Gas.

In January 2023, the NRC certified NuScale's 50 MWe design for use in the US. However this was for an earlier version of the design to the current 77 MWe design expected to be deployed; this version was resubmitted to the NRC in January 2023 and could take up to two years for approval.

Reactors

Nuscale Power 
A diagram of a NuScale small modular reactor (SMR).

NuScale reactors take 1% of the space of a conventional reactor and generate 77 MWe. The design uses light water for cooling and power generation as in conventional nuclear plants. Water is heated by the nuclear core at the base of the reactor vessel. Heated water flows up the riser, then down over steam generators. As heat is transferred, the water cools and becomes denser, sinking to the bottom of the device, and the cycle is repeated. The heat creates steam that turns a turbine, which drives an electrical generator.

The first version of the reactor vessel was expected to be 9 feet (2.7 m) in diameter and 65 feet (20 m) tall, weighing 650 short tons (590 metric tons). The modules are pre-fabricated, delivered by rail, barge or truck and assembled on-site. As of 2021, the units are expected to produce 77 MWe (gross), or about 73.5 MWe (net), and require refueling with standard 4.95 percent low-enriched uranium-235 fuel every two years.

NuScale's design does not rely on powered water pumps or circulatory equipment. The reactor is designed to shut down and cool itself indefinitely during most accidents. The devices are intended to be installed in a below-ground pool to absorb earthquake shocks, with a concrete lid over the pool. In the event that power is lost for normal cooling systems, the water in the pool absorbs heat and boils. The pool stores enough water to safely cool the reactor core for an unlimited amount of time without needing manual replenishment.

In normal operating conditions the containment vessel pressure is at a near vacuum, which eliminates convection giving simpler heat transfer conditions. This also reduces component corrosion and improves instrumentation reliability.

The reactors are installed in the reactor pool in individual bays separated by concrete walls. For refueling the entire reactor is moved underwater through a transfer channel to a connected pool which has the refueling equipment. There is also an extra reactor bay for maintenance or possible storage of a spare module. At a 12-reactor plant the bays are arranged in two rows of six reactors with the transfer channel centrally between the rows.

Comparisons

Nuscale Power 
Full-scale mockup of the upper one-third of the NuScale Power Module

NuScale is expected to be the first SMR to market, because it is similar to the systems used in conventional power plants. The company estimates a twelve-unit NuScale plant would cost $4,200 (an earlier estimate was $5,000) per kilowatt. In comparison, the Energy Information Administration in 2013 estimated overnight costs to be $4,700 per kilowatt for conventional nuclear power, $4,600 for a carbon sequestration coal plant and $931 at a gas-fired plant or in excess of $1,800 for a gas-fired plant with carbon sequestration (all 2011 dollars). David Mohre, executive director of NRECA's Energy and Power Division, said SMRs like NuScale's are ideal for rural towns that need small power plants.

NuScale power plants are expected to take less time, materials and space to construct than other power sources and can be expanded incrementally to meet growing power needs. With the steam generators internal to the movable steel reactor assembly, the SMR does not have a large concrete secondary containment building as used in large PWRs. There is a single control room for up to 12 reactors. One disadvantage of the design is that the reactors lie in a large pool of water, for emergency cooling, but this pool requires much more reinforced concrete per MWe produced than a conventional nuclear reactor building, adding considerably to cost.

New Scientist reported peer‑reviewed analysis from Stanford University that assessed nuclear waste production from SMR reactors and concluded that "SMR performed worse on nearly all of our metrics compared to standard commercial reactors". The results of the study were rejected by NuScale as based on outdated information.

Potential SMR competitors include Babcock & Wilcox, GE Hitachi Nuclear Energy, Gen4 Energy, Holtec International, Intellectual Ventures, OPEN100, Westinghouse Electric Company, and X-energy.

Safety concerns

In March 2020, a panel of independent experts from the NRC's Advisory Committee on Reactor Safeguards (ACRS) claimed to find reactor design flaws. The main issue was that in the event of an emergency shutdown condensed steam returning to the reactor vessel would be low in boron and might not absorb enough neutrons. NuScale modified its design to ensure that more boron would spread to the returning water. ACRS was concerned that operators could accidentally add deboronated water to the core. The panel found other problems: the steam generator could be prone to damaging vibrations. However, on 29 July ACRS recommended that the safety evaluation report be issued and the reactor be certified.

Operations

NuScale has offices in Portland, Oregon; Corvallis, Oregon; Charlotte, North Carolina; and Rockville, Maryland. Its headquarters are in Portland and its factory is located in Corvallis. It maintains a test facility at Oregon State University and Italy.

The company is publicly traded as SMR on the New York Stock Exchange.

See also

  • List of small modular reactor designs
  • TMSR-LF1 Thorium Molten-Salt Reactor, under construction in China
  • HTR-PM High-temperature gas-cooled, commissioned for operation in China
  • BREST Uranium-Plutonium Lead-Cooled Reactor, under construction in Russia
  • ARC-100 Sodium Cooled Uranium Reactor, under construction in Canada

Notes

References

This article uses material from the Wikipedia English article NuScale Power, which is released under the Creative Commons Attribution-ShareAlike 3.0 license ("CC BY-SA 3.0"); additional terms may apply (view authors). Content is available under CC BY-SA 4.0 unless otherwise noted. Images, videos and audio are available under their respective licenses.
®Wikipedia is a registered trademark of the Wiki Foundation, Inc. Wiki English (DUHOCTRUNGQUOC.VN) is an independent company and has no affiliation with Wiki Foundation.

Tags:

Nuscale Power HistoryNuscale Power ReactorsNuscale Power OperationsNuscale Power

🔥 Trending searches on Wiki English:

Water speed recordIlluminatiJackie ChanCorey HaimMathias BoeGeneration ZList of Marvel Cinematic Universe filmsJake GyllenhaalDune (2021 film)Bad Boy RecordsKen MilesThe Goat LifeList of countries by GDP (nominal) per capitaList of countries and dependencies by populationI-40 bridge disasterLand of BadCurb Your EnthusiasmDenis VilleneuveImaginary (film)XXX (film series)Coral CastleXXXXJamie-Lynn SiglerBattle of New CarthageYouTubeJohn Bradley (English actor)JapanGeneration XKylian MbappéDaniel James (footballer)Declan RiceStripchatEuphoria (American TV series)Anatomy of a FallMax VerstappenZach HymanSeth MacFarlaneWorld Wide WebThe Voice (American season 25)List of country calling codesTed McGinleyAldrich AmesDavid DastmalchianAnimal (2023 Indian film)Usher (musician)Conor McGregorCillian MurphyCaitlin ClarkJimmy CarterI-35W Mississippi River bridgePhilippe TroussierKillers of the Flower Moon (film)FlipkartPhilippinesClint EastwoodSwatantrya Veer SavarkarRise of the RōninList of United States cities by populationElizabeth IINicolas CageYoung SheldonGeorgia (country)Ivan ToneyRichard SerraCowboy CarterC (programming language)Holy WednesdayMain PageMeek MillMonacoKangana RanautCzech RepublicStranger ThingsTom Hardy🡆 More