Mountain Formation

Mountain formation refers to the geological processes that underlie the formation of mountains.

These processes are associated with large-scale movements of the Earth's crust (tectonic plates). Folding, faulting, volcanic activity, igneous intrusion and metamorphism can all be parts of the orogenic process of mountain building. The formation of mountains is not necessarily related to the geological structures found on it.

Mountain Formation
Thrust and reverse fault movement are an important component of mountain formation.
Mountain Formation
Illustration of mountains that developed on a fold that thrusted.

From the late 18th century until its replacement by plate tectonics in the 1960s, geosyncline theory was used to explain much mountain-building. The understanding of specific landscape features in terms of the underlying tectonic processes is called tectonic geomorphology, and the study of geologically young or ongoing processes is called neotectonics.[clarification needed]

Types of mountains

There are five main types of mountains: volcanic, fold, plateau, fault-block, and dome. A more detailed classification useful on a local scale predates plate tectonics and adds to these categories.

Volcanic mountains

Mountain Formation 
Annotated view includes Ushkovsky, Tolbachik, Bezymianny, Zimina, and Udina stratovolcanoes of Kamchatka, Russia. Oblique view taken on November 12, 2013, from ISS.
Mountain Formation 
Stratovolcanoes associated with a subduction zone (left) and a spreading ridge volcano (right). A hotspot volcano is center.

Movements of tectonic plates create volcanoes along the plate boundaries, which erupt and form mountains. A volcanic arc system is a series of volcanoes that form near a subduction zone where the crust of a sinking oceanic plate melts and drags water down with the subducting crust.

Mountain Formation 
The Dome of Vitosha mountain next to Sofia

Most volcanoes occur in a band encircling the Pacific Ocean (the Pacific Ring of Fire), and in another that extends from the Mediterranean across Asia to join the Pacific band in the Indonesian Archipelago. The most important types of volcanic mountain are composite cones or stratovolcanoes and shield volcanoes.

A shield volcano has a gently sloping cone because of the low viscosity of the emitted material, primarily basalt. Mauna Loa is the classic example, with a slope of 4°-6°. (The relation between slope and viscosity falls under the topic of angle of repose.) A composite volcano or stratovolcano has a more steeply rising cone (33°-40°), because of the higher viscosity of the emitted material, and eruptions are more violent and less frequent than for shield volcanoes. Examples include Vesuvius, Kilimanjaro, Mount Fuji, Mount Shasta, Mount Hood and Mount Rainier.

Fold mountains

Mountain Formation 
Zard-Kuh, a fold mountain in the central Zagros range of Iran.

When plates collide or undergo subduction (that is, ride one over another), the plates tend to buckle and fold, forming mountains. Most of the major continental mountain ranges are associated with thrusting and folding or orogenesis. Examples are the Balkan Mountains, the Jura and the Zagros mountains.

Block mountains

Mountain Formation 
Fault-block mountain of the tilted type.
Mountain Formation 
Sierra Nevada Mountains (formed by delamination) as seen from the International Space Station.

When a fault block is raised or tilted, a block mountain can result. Higher blocks are called horsts, and troughs are called grabens. A spreading apart of the surface causes tensional forces. When the tensional forces are strong enough to cause a plate to split apart, it does so such that a center block drops down relative to its flanking blocks.

An example is the Sierra Nevada range, where delamination created a block 650 km long and 80 km wide that consists of many individual portions tipped gently west, with east facing slips rising abruptly to produce the highest mountain front in the continental United States.

Another example is the RilaRhodope massif in Bulgaria, including the well defined horsts of Belasitsa (linear horst), Rila mountain (vaulted domed shaped horst) and Pirin mountain—a horst forming a massive anticline situated between the complex graben valleys of the Struma and Mesta rivers.

Uplifted passive margins

Unlike orogenic mountains there is no widely accepted geophysical model that explains elevated passive continental margins such as the Scandinavian Mountains, eastern Greenland, the Brazilian Highlands, or Australia's Great Dividing Range. Different elevated passive continental margins most likely share the same mechanism of uplift. This mechanism is possibly related to far-field stresses in Earth's lithosphere. According to this view elevated passive margins can be likened to giant anticlinal lithospheric folds, where folding is caused by horizontal compression acting on a thin to thick crust transition zone (as are all passive margins).

Models

Hotspot volcanoes

Hotspots are supplied by a magma source in the Earth's mantle called a mantle plume. Although originally attributed to a melting of subducted oceanic crust, recent evidence belies this connection. The mechanism for plume formation remains a research topic.

Fault blocks

Several movements of the Earth's crust that lead to mountains are associated with faults. These movements actually are amenable to analysis that can predict, for example, the height of a raised block and the width of an intervening rift between blocks using the rheology of the layers and the forces of isostasy. Early bent plate models predicting fractures and fault movements have evolved into today's kinematic and flexural models.

See also

  • 3D fold evolution
  • Continental collision – Phenomenon in which mountains can be produced on the boundaries of converging tectonic plates
  • Cycle of erosion – Model of geographic landscape evolution
  • Inselberg – Isolated, steep rock hill on relatively flat terrain
  • Seamount – Mountain rising from the ocean seafloor that does not reach to the water's surface

References

Tags:

Mountain Formation Types of mountainsMountain Formation ModelsMountain FormationEarth's crustFault (geology)Fold (geology)Igneous intrusionList of tectonic platesMetamorphismMountainOrogenyStructural geologyVolcano

🔥 Trending searches on Wiki English:

Fallout 4InstagramCole PalmerYandex.Zen2024 Republican Party presidential primariesMartin ØdegaardJennifer LawrenceList of constituencies of the Lok SabhaBoeing 747Vijay (actor)List of Marvel Cinematic Universe films2024 NFL draftGary GlitterLaptopHarley BalicJosh O'ConnorM. Night ShyamalanGodzilla Minus OneTupac ShakurBruce WillisDavid ArchuletaKirstie AlleyJoel EmbiidMatthew PerryBarbara WaltersNaz ReidKent State shootings2024 Andhra Pradesh Legislative Assembly electionSydney SweeneyMinecraftNitin GadkariTimothée ChalametOpenAITheodore RooseveltCharles IIIJürgen KloppThe Ministry of Ungentlemanly WarfareKai HavertzJoe BidenThe Gentlemen (2024 TV series)Erin MoranDune (2021 film)Ronnie O'SullivanPalm RoyaleEnglish languageDune (franchise)The SimpsonsArticle 370 of the Constitution of IndiaSex and the CityVietnam WarVirat KohliAngelina JolieDouglas DC-4Zulu AdigweIndiaFour Horsemen of the ApocalypseStormy DanielsMaldivesThe Fall Guy (2024 film)Boy Kills WorldWalton GogginsMarlon BrandoAndrew Scott (actor)United Arab EmiratesAdministrative Professionals DayRobert F. Kennedy Jr.Breaking Bad1X-Men '97Nikola JokićPresident of Columbia UniversityX (2022 film)Jonathan KnightSeven deadly sinsSylvester StalloneGeneration XVoice of VietnamKingdom of the Planet of the ApesNeatsville, Kentucky🡆 More