Programming Language Clean

Clean is a general-purpose purely functional programming language.

Originally called the Concurrent Clean System or the Clean System, it has been developed by a group of researchers from the Radboud University in Nijmegen since 1987. Although development of the language has slowed, some researchers are still working in the language. In 2018, a spin-off company was founded that uses Clean.

Clean
Programming Language Clean
Paradigmfunctional
Designed bySoftware Technology Research Group of Radboud University Nijmegen
First appeared1987; 37 years ago (1987)
Stable release
3.1 / 5 January 2022; 2 years ago (2022-01-05)
Typing disciplinestrong, static, dynamic
OSCross-platform
LicenseSimplified BSD
Filename extensions.icl, .dcl, .abc
Websiteclean.cs.ru.nl
Influenced by
Lean, Miranda, Haskell
Influenced
Haskell, Idris

Features

Clean shares many properties and syntax with a younger sibling language, Haskell: referential transparency, list comprehension, guards, garbage collection, higher order functions, currying, and lazy evaluation. However, Clean deals with mutable state and input/output (I/O) through a uniqueness type system, in contrast to Haskell's use of monads. The compiler takes advantage of the uniqueness type system to generate more efficient code, because it knows that at any point during the execution of the program, only one reference can exist to a value with a unique type. Therefore, a unique value can be changed in place.

An integrated development environment (IDE) for Microsoft Windows is included in the Clean distribution.

Examples

Hello world:

 Start = "Hello, world!" 

Factorial:

fac :: Int -> Int fac 0 = 1 fac n = n * fac (n-1)  Start = fac 10 
fac :: Int -> Int fac n = prod [1..n] // The product of the numbers 1 to n  Start = fac 10 

Fibonacci sequence:

fib :: Int -> Int fib 0 = 1 fib 1 = 1 fib n = fib (n - 2) + fib (n - 1)   Start = fib 7 
fibs :: Int Int -> [Int] fibs x_2 x_1 = [x_2:fibs x_1 (x_2 + x_1)]  fib :: Int -> Int fib n = (fibs 1 1) !! n  Start = fib 7 

Infix operator:

(^) infixr 8 :: Int Int -> Int (^) x 0 = 1 (^) x n = x * x ^ (n-1) 

The type declaration states that the function is a right associative infix operator with priority 8: this states that x*x^(n-1) is equivalent to x*(x^(n-1)) as opposed to (x*x)^(n-1). This operator is pre-defined in StdEnv, the Clean standard library.

How Clean works

Computing is based on graph rewriting and reduction. Constants such as numbers are graphs and functions are graph rewriting formulas. This, combined with compiling to native code, makes Clean programs which use high abstraction run relatively fast according to The Computer Language Benchmarks Game. A 2008 benchmark showed that Clean native code performs similarly to the Glasgow Haskell Compiler (GHC), depending on the benchmark.

Compiling

Compilation of Clean to machine code is performed as follows:

  1. Source files (.icl) and definition files (.dcl) are translated into Core Clean, a basic variant of Clean, by the compiler frontend written in Clean.
  2. Core clean is converted into Clean's platform-independent intermediate language (.abc), by the compiler backend written in Clean and C.
  3. Intermediate ABC code is converted to object code (.o) by the code generator written in C.
  4. Object code is linked with other files in the module and the runtime system and converted into a normal executable using the system linker (when available) or a dedicated linker written in Clean on Windows.

Earlier versions of the Clean compiler were written completely in C, thus avoiding bootstrapping issues.

The ABC machine

The ABC code mentioned above is an intermediate representation for an abstract machine. Because machine code generation for ABC code is relatively straightforward, it is easy to support new architectures. The ABC machine is an imperative abstract graph rewriting machine. It consists of a graph store to hold the Clean graph that is being rewritten and three stacks:

  • The A(rgument)-stack holds arguments that refer to nodes in the graph store.
  • The B(asic value)-stack holds basic values (integers, characters, reals, etc.). Although these values could be nodes in the graph store, a separate stack is used for efficiency.
  • The C(ontrol)-stack holds return addresses for flow control.

The runtime system, which is linked into every executable, builds a Start node in the graph store and pushes it on the A-stack. It then begins printing it, evaluating it as needed.

Running Clean in the browser

Although Clean is typically used to generate native executables, several projects have enabled applications in web browsers. The now abandoned SAPL project compiled Core Clean to JavaScript and did not use ABC code. Since 2019, an interpreter for ABC code, written in WebAssembly, is used instead.

Platforms

Clean is available for Microsoft Windows (IA-32 and X86-64), macOS (X86-64), and Linux (IA-32, X86-64, and AArch64).[citation needed]

Some libraries are not available on all platforms, like ObjectIO which is only available on Windows. Also the feature to write dynamics to files is only available on Windows.[citation needed]

The availability of Clean per platform varies with each version:

Version Date Linux macOS Oracle Solaris Windows Miscellaneous
IA-32 x86-64 AArch64 Motorola 68040 PowerPC x86-64 SPARC IA-32 x86-64
3.1 5 January 2022 Yes Yes Yes No No Yes No Yes Yes
3.0 2 October 2018 Yes Yes No No No Yes No Yes Yes
2.4 23 December 2011 Yes Yes No No No Yes No Yes Yes
2.3 22 December 2010 Yes Yes No No No No No Yes Yes
2.2 19 December 2006 Yes Yes No No Yes No Yes Yes Yes
2.1.1 31 May 2005 Yes No No No Yes No Yes Yes No
2.1.0 31 October 2003 Yes No No No Yes No Yes Yes No
2.0.2 12 December 2002 Yes No No No Yes No Yes Yes No
2.0.1 4 July 2002 Yes No No No Yes No Yes Yes No
2.0 21 December 2001 No No No No No No No Yes No
1.3.3 13 September 2000 Yes No No No Yes No Yes Yes No
1.3.2 1 July 1999 No No No Yes Yes No Yes Yes No
1.3.1 January 1999 Yes No No No Yes No Yes Yes No
1.3 22 May 1998 Yes No No No Yes No Yes Yes No
1.2.4 June 1997 No No No Yes Yes No No Yes No
1.2.3 May 1997 No No No Yes Yes No No Yes No
1.2 13 January 1997 No No No Yes Yes No No No No
1.1.3 October 1996 No No No No No No Yes No No OS/2 (i80386)
1.1.2 September 1996 Yes No No No No No Yes No No SunOS 4 (SPARC)
1.1 March 1996 Yes No No Yes No No No No No
1.0.2 September 1995 Yes No No Yes No No Yes No No OS/2 (i80386); SunOS 4 (SPARC)
1.0 May 1995 No No No Yes No No No No No OS/2 (i80386)
0.8.4 11 May 1993 Yes No No Yes No No No No No Experimental T800 transputer release
0.8.3 26 February 1993 No No No Yes No No No No No
0.8.1 19 October 1992 No No No Yes No No No No No
0.8 13 July 1992 No No No Yes No No No No No OS/2 (i80386); SunOS 3–4 (SPARC)
0.7 May 1991 No No No Yes No No No No No SunOS 3–4 (SPARC)

Comparison to Haskell

The syntax of Clean is very similar to that of Haskell, with some notable differences. In general, Haskell has introduced more syntactic sugar than Clean:

Haskell Clean Remarks
[ x | x <- [1..10] , isOdd x] 
[ x \\ x <- [1..10] | isOdd x] 
list comprehension
x:xs 
[x:xs] 
cons operator
data Tree a   = Empty   | Node (Tree a) a (Tree a) 
:: Tree a   = Empty   | Node (Tree a) a (Tree a) 
algebraic data type
(Eq a, Eq b) => ... 
... | Eq a & Eq b 
class assertions and contexts
fun t@(Node l x r) = ... 
fun t=:(Node l x r) = ... 
as-patterns
if x > 10 then 10 else x 
if (x > 10) 10 x 
if

References

Tags:

Programming Language Clean FeaturesProgramming Language Clean ExamplesProgramming Language Clean How Clean worksProgramming Language Clean CompilingProgramming Language Clean PlatformsProgramming Language Clean Comparison to HaskellProgramming Language Clean

🔥 Trending searches on Wiki English:

Ronnie O'SullivanEden GardensMichael OherZooey DeschanelBob OdenkirkCamilla, Queen ConsortHarry BelafonteMichelle PfeifferChester BenningtonBella RamseyTrisha (actress)Candy (miniseries)Dwyane WadeTwitterTikTokLim Ji-yeonMrBeastBobbi Kristina BrownBruce SpringsteenBhagyashreeMain PageJason MomoaRobert F. KennedyArtificial intelligenceVal Kilmer2023 Sudan conflictFranklin D. Roosevelt2023 Badminton Asia ChampionshipsFred ArmisenIndiaC (programming language)Adolf HitlerJohn TravoltaMoonbin2 Girls 1 CupShah Rukh Khan2023 FIBA Basketball World CupUFC 288Dolly PartonAlexander the GreatList of ethnic slursAzerbaijan Grand PrixEd Balls2023 Asia CupSarah ChalkeBluesky SocialDiana, Princess of WalesEnglish football league systemBeef (TV series)Dzhokhar Tsarnaev2022 NFL DraftSudanArjun RampalBreaking BadKenneth Lofton Jr.Gillian McKeithMadonna2023 Mutua Madrid Open – Women's singlesJennifer LawrenceHarrison FordPathu ThalaCharlie Brown and Franz Stigler incidentTiger ShroffMetallicaFlipkartDennis Cleveland StewartSai PallaviRajaraja IAnjelica HustonSexNarendra ModiElon MuskNew ZealandSexual intercourse2021 NFL DraftLindsay LohanDavid BeckhamReal Madrid CF🡆 More