Kurs:Elemente der Algebra (Osnabrück 2015)/Vorlesung 21



Dimensionstheorie

Ein endlich erzeugter Vektorraum hat im Allgemeinen ganz unterschiedliche Basen. Allerdings ist die Anzahl der Elemente in einer Basis stets konstant und hängt nur vom Vektorraum ab. Diese wichtige Eigenschaft werden wir jetzt beweisen und als Ausgangspunkt für die Definition der Dimension eines Vektorraums nehmen.



Lemma  

Es sei einKörperund ein-Vektorraum mit einerBasis. Es sei ein Vektor mit einer Darstellung

wobeisei für ein bestimmtes .

Dann ist auch die Familie

eine Basis von .

Beweis  

Wir zeigen zuerst, dass die neue Familie ein Erzeugendensystem ist. Zunächst kann man wegen

und den Vektor als

schreiben. Es sei nun beliebig vorgegeben. Dann kann man schreiben


Zum Nachweis der linearen Unabhängigkeit nehmen wir zwecks Notationsvereinfachung an. Es sei

eine Darstellung der Null. Dann ist
Aus der linearen Unabhängigkeit der Ausgangsfamilie folgt insbesondere , und wegen ergibt sich . Deshalb ist und daher gilt für alle .


Die vorstehende Aussage heißt Austauschlemma, die nachfolgende Austauschsatz.


Satz  

Es sei einKörperund ein-Vektorraum mit einerBasis

Ferner sei

eine Familie vonlinear unabhängigenVektoren in .

Dann gibt es eine Teilmenge derart, dass die Familie

eine Basis von ist.

Insbesondere ist .

Beweis  

Wir führen Induktion über , also über die Anzahl der Vektoren in der Familie. Bei ist nichts zu zeigen. Es sei die Aussage für schon bewiesen und seien linear unabhängige Vektoren

gegeben. Nach Induktionsvoraussetzung, angewandt auf die

(ebenfalls linear unabhängigen) Vektoren

gibt es eine Teilmenge derart, dass die Familie

eine Basis von ist. Wir wollen auf diese Basisdas Austauschlemmaanwenden. Da eine Basis vorliegt, kann man

schreiben. Wären hierbei alle Koeffizienten ,  so ergäbe sich sofort ein Widerspruch zur linearen Unabhängigkeit der, .Es gibt also ein mit . Wir setzen . Damit ist eine -elementige Teilmenge von . Nach dem Austauschlemma kann man den Basisvektor durch ersetzen und erhält die neue Basis

  Der Zusatz folgt sofort, da eine -elementige Teilmenge einer -elementigen Menge vorliegt.



Satz  

Es sei einKörperund ein-Vektorraum mit einem endlichen Erzeugendensystem.

Dann besitzen je zwei Basen von die gleiche Anzahl von Basisvektoren.

Beweis  

Es seien und zwei Basen von . Aufgrund des Basisaustauschsatzes,angewandt auf die Basis und die linear unabhängige Familie ergibt sich . Wendet man den Austauschsatz umgekehrt an, so folgt , also insgesamt .


Dieser Satz erlaubt die folgende Definition.


Definition  

Es sei einKörperund ein-Vektorraum mit einem endlichen Erzeugendensystem.Dann nennt man die Anzahl der Vektoren in einerBasisvon die Dimension von , geschrieben

Wenn ein Vektorraum nicht endlich erzeugt ist, so setzt man . Der Nullraum hat die Dimension . Einen eindimensionalen Vektorraum nennt man auch eine Gerade, einen zweidimensionalen Vektorraum eine Ebene, einen dreidimensionalen Vektorraum einen Raum (im engeren Sinn), wobei man andererseits auch jeden Vektorraum einen Raum nennt.



Korollar  

Es sei einKörper und.

Dann besitzt derStandardraum dieDimension .

Beweis  

Die Standardbasis, , besteht aus Vektoren, also ist die Dimension .



Beispiel  

Diekomplexen Zahlenbilden einen zweidimensionalen reellenVektorraum,eine Basis ist z.B. und .



Beispiel  

DerPolynomringüber einemKörper ist kein endlichdimensionaler Vektorraum.Es ist zu zeigen, dass es kein endliches Erzeugendensystemdes Polynomringes gibt. Betrachten wir Polynome . Es sei das Maximum der Gradedieser Polynome. Dann hat auch jede-Linearkombination maximal den Grad . Insbesondere können Polynome von einem größeren Grad nicht durch dargestellt werden, und diese endlich vielen Polynome sind kein Erzeugendensystem für alle Polynome.




Korollar  

Es sei einKörperund einendlichdimensionaler-Vektorraum. Es seiein Untervektorraum.

Dann ist ebenfalls endlichdimensional und es gilt

Beweis  

Sei.Jede linear unabhängige Familie in ist auch linear unabhängig in . Daher kann es aufgrund des Basisaustauschsatzesin nur linear unabhängige Familien der Länge geben. Es seiderart, dass es in eine linear unabhängige Familie mit Vektoren gibt, aber nicht mit Vektoren. Seieine solche Familie. Diese ist dann insbesondere eine maximal linear unabhängige Familie in und daher wegenSatz 20.12eine Basis von .



Korollar

Es sei einKörperund ein-Vektorraum mit endlicherDimension. Es seien Vektoren in gegeben.

Dann sind folgende Eigenschaften äquivalent.

  1. bilden eineBasisvon .
  2. bilden einErzeugendensystemvon .
  3. sindlinear unabhängig.

Beweis

SieheAufgabe 21.1.



Beispiel  

Es sei einKörper. Man kann sich einfach einen Überblick über die Untervektorräumedes verschaffen, als Dimensionvon Untervektorräumen kommt nachKorollar 21.8nur mit in Frage. Beigibt es nur den Nullraum selbst, bei gibt es den Nullraum und selbst. Beigibt es den Nullraum, die gesamte Ebene , und die eindimensionalen Geraden durch den Nullpunkt. Jede solche Gerade hat die Gestalt

mit einem von verschiedenen Vektor . Zwei von verschiedene Vektoren definieren genau dann die gleiche Gerade, wenn sielinear abhängigsind. Bei gibt es den Nullraum, den Gesamtraum , die eindimensionalen Geraden durch den Nullpunkt und die zweidimensionalen Ebenen durch den Nullpunkt.


Der folgende Satz heißt Basisergänzungssatz.


Satz  

Es sei einKörperund einendlichdimensionaler-VektorraumderDimension. Es seien

linear unabhängigeVektoren in .

Dann gibt es Vektoren

derart, dass

eineBasisvon bilden.

Beweis  

Es sei eineBasis von . Aufgrund des Austauschsatzesfindet man Vektoren aus der Basis , die zusammen mit den vorgegebenen eine Basis von bilden.



<< | Kurs:Elemente der Algebra (Osnabrück 2015) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)