Abelian Group

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written.

That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified.

Definition

An abelian group is a set Abelian Group , together with an operation Abelian Group  that combines any two elements Abelian Group  and Abelian Group  of Abelian Group  to form another element of Abelian Group  denoted Abelian Group . The symbol Abelian Group  is a general placeholder for a concretely given operation. To qualify as an abelian group, the set and operation, Abelian Group , must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the result belongs to A):

    Associativity
    For all Abelian Group , Abelian Group , and Abelian Group  in Abelian Group , the equation Abelian Group  holds.
    Identity element
    There exists an element Abelian Group  in Abelian Group , such that for all elements Abelian Group  in Abelian Group , the equation Abelian Group  holds.
    Inverse element
    For each Abelian Group  in Abelian Group  there exists an element Abelian Group  in Abelian Group  such that Abelian Group , where Abelian Group  is the identity element.
    Commutativity
    For all Abelian Group , Abelian Group  in Abelian Group , Abelian Group .

A group in which the group operation is not commutative is called a "non-abelian group" or "non-commutative group".: 11 

Facts

Notation

There are two main notational conventions for abelian groups – additive and multiplicative.

Convention Operation Identity Powers Inverse
Addition Abelian Group  0 Abelian Group  Abelian Group 
Multiplication Abelian Group  or Abelian Group  1 Abelian Group  Abelian Group 

Generally, the multiplicative notation is the usual notation for groups, while the additive notation is the usual notation for modules and rings. The additive notation may also be used to emphasize that a particular group is abelian, whenever both abelian and non-abelian groups are considered, some notable exceptions being near-rings and partially ordered groups, where an operation is written additively even when non-abelian.: 28–29 : 9–14 

Multiplication table

To verify that a finite group is abelian, a table (matrix) – known as a Cayley table – can be constructed in a similar fashion to a multiplication table.: 10  If the group is Abelian Group  under the operation Abelian Group , the Abelian Group -th entry of this table contains the product Abelian Group .

The group is abelian if and only if this table is symmetric about the main diagonal. This is true since the group is abelian iff Abelian Group  for all Abelian Group , which is iff the Abelian Group  entry of the table equals the Abelian Group  entry for all Abelian Group , i.e. the table is symmetric about the main diagonal.

Examples

  • For the integers and the operation addition Abelian Group , denoted Abelian Group , the operation + combines any two integers to form a third integer, addition is associative, zero is the additive identity, every integer Abelian Group  has an additive inverse, Abelian Group , and the addition operation is commutative since Abelian Group  for any two integers Abelian Group  and Abelian Group .
  • Every cyclic group Abelian Group  is abelian, because if Abelian Group , Abelian Group  are in Abelian Group , then Abelian Group . Thus the integers, Abelian Group , form an abelian group under addition, as do the integers modulo Abelian Group , Abelian Group .
  • Every ring is an abelian group with respect to its addition operation. In a commutative ring the invertible elements, or units, form an abelian multiplicative group. In particular, the real numbers are an abelian group under addition, and the nonzero real numbers are an abelian group under multiplication.
  • Every subgroup of an abelian group is normal, so each subgroup gives rise to a quotient group. Subgroups, quotients, and direct sums of abelian groups are again abelian. The finite simple abelian groups are exactly the cyclic groups of prime order.: 32 
  • The concepts of abelian group and Abelian Group -module agree. More specifically, every Abelian Group -module is an abelian group with its operation of addition, and every abelian group is a module over the ring of integers Abelian Group  in a unique way.

In general, matrices, even invertible matrices, do not form an abelian group under multiplication because matrix multiplication is generally not commutative. However, some groups of matrices are abelian groups under matrix multiplication – one example is the group of Abelian Group  rotation matrices.

Historical remarks

Camille Jordan named abelian groups after Norwegian mathematician Niels Henrik Abel, as Abel had found that the commutativity of the group of a polynomial implies that the roots of the polynomial can be calculated by using radicals.: 144–145 : 157–158 

Properties

If Abelian Group  is a natural number and Abelian Group  is an element of an abelian group Abelian Group  written additively, then Abelian Group  can be defined as Abelian Group  (Abelian Group  summands) and Abelian Group . In this way, Abelian Group  becomes a module over the ring Abelian Group  of integers. In fact, the modules over Abelian Group  can be identified with the abelian groups.: 94–97 

Theorems about abelian groups (i.e. modules over the principal ideal domain Abelian Group ) can often be generalized to theorems about modules over an arbitrary principal ideal domain. A typical example is the classification of finitely generated abelian groups which is a specialization of the structure theorem for finitely generated modules over a principal ideal domain. In the case of finitely generated abelian groups, this theorem guarantees that an abelian group splits as a direct sum of a torsion group and a free abelian group. The former may be written as a direct sum of finitely many groups of the form Abelian Group  for Abelian Group  prime, and the latter is a direct sum of finitely many copies of Abelian Group .

If Abelian Group  are two group homomorphisms between abelian groups, then their sum Abelian Group , defined by Abelian Group , is again a homomorphism. (This is not true if Abelian Group  is a non-abelian group.) The set Abelian Group  of all group homomorphisms from Abelian Group  to Abelian Group  is therefore an abelian group in its own right.

Somewhat akin to the dimension of vector spaces, every abelian group has a rank. It is defined as the maximal cardinality of a set of linearly independent (over the integers) elements of the group.: 49–50  Finite abelian groups and torsion groups have rank zero, and every abelian group of rank zero is a torsion group. The integers and the rational numbers have rank one, as well as every nonzero additive subgroup of the rationals. On the other hand, the multiplicative group of the nonzero rationals has an infinite rank, as it is a free abelian group with the set of the prime numbers as a basis (this results from the fundamental theorem of arithmetic).

The center Abelian Group  of a group Abelian Group  is the set of elements that commute with every element of Abelian Group . A group Abelian Group  is abelian if and only if it is equal to its center Abelian Group . The center of a group Abelian Group  is always a characteristic abelian subgroup of Abelian Group . If the quotient group Abelian Group  of a group by its center is cyclic then Abelian Group  is abelian.

Finite abelian groups

Cyclic groups of integers modulo Abelian Group , Abelian Group , were among the first examples of groups. It turns out that an arbitrary finite abelian group is isomorphic to a direct sum of finite cyclic groups of prime power order, and these orders are uniquely determined, forming a complete system of invariants. The automorphism group of a finite abelian group can be described directly in terms of these invariants. The theory had been first developed in the 1879 paper of Georg Frobenius and Ludwig Stickelberger and later was both simplified and generalized to finitely generated modules over a principal ideal domain, forming an important chapter of linear algebra.

Any group of prime order is isomorphic to a cyclic group and therefore abelian. Any group whose order is a square of a prime number is also abelian. In fact, for every prime number Abelian Group  there are (up to isomorphism) exactly two groups of order Abelian Group , namely Abelian Group  and Abelian Group .

Classification

The fundamental theorem of finite abelian groups states that every finite abelian group Abelian Group  can be expressed as the direct sum of cyclic subgroups of prime-power order; it is also known as the basis theorem for finite abelian groups. Moreover, automorphism groups of cyclic groups are examples of abelian groups. This is generalized by the fundamental theorem of finitely generated abelian groups, with finite groups being the special case when G has zero rank; this in turn admits numerous further generalizations.

The classification was proven by Leopold Kronecker in 1870, though it was not stated in modern group-theoretic terms until later, and was preceded by a similar classification of quadratic forms by Carl Friedrich Gauss in 1801; see history for details.

The cyclic group Abelian Group  of order Abelian Group  is isomorphic to the direct sum of Abelian Group  and Abelian Group  if and only if Abelian Group  and Abelian Group  are coprime. It follows that any finite abelian group Abelian Group  is isomorphic to a direct sum of the form

    Abelian Group 

in either of the following canonical ways:

  • the numbers Abelian Group  are powers of (not necessarily distinct) primes,
  • or Abelian Group  divides Abelian Group , which divides Abelian Group , and so on up to Abelian Group .

For example, Abelian Group  can be expressed as the direct sum of two cyclic subgroups of order 3 and 5: Abelian Group . The same can be said for any abelian group of order 15, leading to the remarkable conclusion that all abelian groups of order 15 are isomorphic.

For another example, every abelian group of order 8 is isomorphic to either Abelian Group  (the integers 0 to 7 under addition modulo 8), Abelian Group  (the odd integers 1 to 15 under multiplication modulo 16), or Abelian Group .

See also list of small groups for finite abelian groups of order 30 or less.

Automorphisms

One can apply the fundamental theorem to count (and sometimes determine) the automorphisms of a given finite abelian group Abelian Group . To do this, one uses the fact that if Abelian Group  splits as a direct sum Abelian Group  of subgroups of coprime order, then

    Abelian Group 

Given this, the fundamental theorem shows that to compute the automorphism group of Abelian Group  it suffices to compute the automorphism groups of the Sylow Abelian Group -subgroups separately (that is, all direct sums of cyclic subgroups, each with order a power of Abelian Group ). Fix a prime Abelian Group  and suppose the exponents Abelian Group  of the cyclic factors of the Sylow Abelian Group -subgroup are arranged in increasing order:

    Abelian Group 

for some Abelian Group . One needs to find the automorphisms of

    Abelian Group 

One special case is when Abelian Group , so that there is only one cyclic prime-power factor in the Sylow Abelian Group -subgroup Abelian Group . In this case the theory of automorphisms of a finite cyclic group can be used. Another special case is when Abelian Group  is arbitrary but Abelian Group  for Abelian Group . Here, one is considering Abelian Group  to be of the form

    Abelian Group 

so elements of this subgroup can be viewed as comprising a vector space of dimension Abelian Group  over the finite field of Abelian Group  elements Abelian Group . The automorphisms of this subgroup are therefore given by the invertible linear transformations, so

    Abelian Group 

where Abelian Group  is the appropriate general linear group. This is easily shown to have order

    Abelian Group 

In the most general case, where the Abelian Group  and Abelian Group  are arbitrary, the automorphism group is more difficult to determine. It is known, however, that if one defines

    Abelian Group 

and

    Abelian Group 

then one has in particular Abelian Group , Abelian Group , and

    Abelian Group 

One can check that this yields the orders in the previous examples as special cases (see Hillar & Rhea).

Finitely generated abelian groups

An abelian group A is finitely generated if it contains a finite set of elements (called generators) Abelian Group  such that every element of the group is a linear combination with integer coefficients of elements of G.

Let L be a free abelian group with basis Abelian Group  There is a unique group homomorphism Abelian Group  such that

    Abelian Group 

This homomorphism is surjective, and its kernel is finitely generated (since integers form a Noetherian ring). Consider the matrix M with integer entries, such that the entries of its jth column are the coefficients of the jth generator of the kernel. Then, the abelian group is isomorphic to the cokernel of linear map defined by M. Conversely every integer matrix defines a finitely generated abelian group.

It follows that the study of finitely generated abelian groups is totally equivalent with the study of integer matrices. In particular, changing the generating set of A is equivalent with multiplying M on the left by a unimodular matrix (that is, an invertible integer matrix whose inverse is also an integer matrix). Changing the generating set of the kernel of M is equivalent with multiplying M on the right by a unimodular matrix.

The Smith normal form of M is a matrix

    Abelian Group 

where U and V are unimodular, and S is a matrix such that all non-diagonal entries are zero, the non-zero diagonal entries Abelian Group  are the first ones, and Abelian Group  is a divisor of Abelian Group  for i > j. The existence and the shape of the Smith normal form proves that the finitely generated abelian group A is the direct sum

    Abelian Group 

where r is the number of zero rows at the bottom of S (and also the rank of the group). This is the fundamental theorem of finitely generated abelian groups.

The existence of algorithms for Smith normal form shows that the fundamental theorem of finitely generated abelian groups is not only a theorem of abstract existence, but provides a way for computing expression of finitely generated abelian groups as direct sums.: 26–27 

Infinite abelian groups

The simplest infinite abelian group is the infinite cyclic group Abelian Group . Any finitely generated abelian group Abelian Group  is isomorphic to the direct sum of Abelian Group  copies of Abelian Group  and a finite abelian group, which in turn is decomposable into a direct sum of finitely many cyclic groups of prime power orders. Even though the decomposition is not unique, the number Abelian Group , called the rank of Abelian Group , and the prime powers giving the orders of finite cyclic summands are uniquely determined.

By contrast, classification of general infinitely generated abelian groups is far from complete. Divisible groups, i.e. abelian groups Abelian Group  in which the equation Abelian Group  admits a solution Abelian Group  for any natural number Abelian Group  and element Abelian Group  of Abelian Group , constitute one important class of infinite abelian groups that can be completely characterized. Every divisible group is isomorphic to a direct sum, with summands isomorphic to Abelian Group  and Prüfer groups Abelian Group  for various prime numbers Abelian Group , and the cardinality of the set of summands of each type is uniquely determined. Moreover, if a divisible group Abelian Group  is a subgroup of an abelian group Abelian Group  then Abelian Group  admits a direct complement: a subgroup Abelian Group  of Abelian Group  such that Abelian Group . Thus divisible groups are injective modules in the category of abelian groups, and conversely, every injective abelian group is divisible (Baer's criterion). An abelian group without non-zero divisible subgroups is called reduced.

Two important special classes of infinite abelian groups with diametrically opposite properties are torsion groups and torsion-free groups, exemplified by the groups Abelian Group  (periodic) and Abelian Group  (torsion-free).

Torsion groups

An abelian group is called periodic or torsion, if every element has finite order. A direct sum of finite cyclic groups is periodic. Although the converse statement is not true in general, some special cases are known. The first and second Prüfer theorems state that if Abelian Group  is a periodic group, and it either has a bounded exponent, i.e., Abelian Group  for some natural number Abelian Group , or is countable and the Abelian Group -heights of the elements of Abelian Group  are finite for each Abelian Group , then Abelian Group  is isomorphic to a direct sum of finite cyclic groups. The cardinality of the set of direct summands isomorphic to Abelian Group  in such a decomposition is an invariant of Abelian Group .: 6  These theorems were later subsumed in the Kulikov criterion. In a different direction, Helmut Ulm found an extension of the second Prüfer theorem to countable abelian Abelian Group -groups with elements of infinite height: those groups are completely classified by means of their Ulm invariants.: 317 

Torsion-free and mixed groups

An abelian group is called torsion-free if every non-zero element has infinite order. Several classes of torsion-free abelian groups have been studied extensively:

An abelian group that is neither periodic nor torsion-free is called mixed. If Abelian Group  is an abelian group and Abelian Group  is its torsion subgroup, then the factor group Abelian Group  is torsion-free. However, in general the torsion subgroup is not a direct summand of Abelian Group , so Abelian Group  is not isomorphic to Abelian Group . Thus the theory of mixed groups involves more than simply combining the results about periodic and torsion-free groups. The additive group Abelian Group  of integers is torsion-free Abelian Group -module.: 206 

Invariants and classification

One of the most basic invariants of an infinite abelian group Abelian Group  is its rank: the cardinality of the maximal linearly independent subset of Abelian Group . Abelian groups of rank 0 are precisely the periodic groups, while torsion-free abelian groups of rank 1 are necessarily subgroups of Abelian Group  and can be completely described. More generally, a torsion-free abelian group of finite rank Abelian Group  is a subgroup of Abelian Group . On the other hand, the group of Abelian Group -adic integers Abelian Group  is a torsion-free abelian group of infinite Abelian Group -rank and the groups Abelian Group  with different Abelian Group  are non-isomorphic, so this invariant does not even fully capture properties of some familiar groups.

The classification theorems for finitely generated, divisible, countable periodic, and rank 1 torsion-free abelian groups explained above were all obtained before 1950 and form a foundation of the classification of more general infinite abelian groups. Important technical tools used in classification of infinite abelian groups are pure and basic subgroups. Introduction of various invariants of torsion-free abelian groups has been one avenue of further progress. See the books by Irving Kaplansky, László Fuchs, Phillip Griffith, and David Arnold, as well as the proceedings of the conferences on Abelian Group Theory published in Lecture Notes in Mathematics for more recent findings.

Additive groups of rings

The additive group of a ring is an abelian group, but not all abelian groups are additive groups of rings (with nontrivial multiplication). Some important topics in this area of study are:

Relation to other mathematical topics

Many large abelian groups possess a natural topology, which turns them into topological groups.

The collection of all abelian groups, together with the homomorphisms between them, forms the category Abelian Group , the prototype of an abelian category.

Wanda Szmielew (1955) proved that the first-order theory of abelian groups, unlike its non-abelian counterpart, is decidable. Most algebraic structures other than Boolean algebras are undecidable.

There are still many areas of current research:

  • Amongst torsion-free abelian groups of finite rank, only the finitely generated case and the rank 1 case are well understood;
  • There are many unsolved problems in the theory of infinite-rank torsion-free abelian groups;
  • While countable torsion abelian groups are well understood through simple presentations and Ulm invariants, the case of countable mixed groups is much less mature.
  • Many mild extensions of the first-order theory of abelian groups are known to be undecidable.
  • Finite abelian groups remain a topic of research in computational group theory.

Moreover, abelian groups of infinite order lead, quite surprisingly, to deep questions about the set theory commonly assumed to underlie all of mathematics. Take the Whitehead problem: are all Whitehead groups of infinite order also free abelian groups? In the 1970s, Saharon Shelah proved that the Whitehead problem is:

A note on typography

Among mathematical adjectives derived from the proper name of a mathematician, the word "abelian" is rare in that it is often spelled with a lowercase a, rather than an uppercase A, the lack of capitalization being a tacit acknowledgment not only of the degree to which Abel's name has been institutionalized but also of how ubiquitous in modern mathematics are the concepts introduced by him.

See also

Notes

References

Tags:

Abelian Group DefinitionAbelian Group FactsAbelian Group ExamplesAbelian Group Historical remarksAbelian Group PropertiesAbelian Group Finite abelian groupsAbelian Group Finitely generated abelian groupsAbelian Group Infinite abelian groupsAbelian Group Relation to other mathematical topicsAbelian Group A note on typographyAbelian GroupCommutativeGroup (mathematics)Group operationIntegerMathematicsNiels Henrik AbelReal number

🔥 Trending searches on Wiki English:

John F. KennedyAshwatthamaVietnam under Chinese ruleSolo LevelingBack to Black (film)World Book DaySwitzerland2024 Indian general election in Uttar PradeshCoachellaJack AntonoffDerby della MadonninaJake Paul vs. Mike TysonO. J. SimpsonHybe CorporationUnited StatesGary O'NeilSean CombsCandidates Tournament 2024English languageBabe RuthMalumaClara BowJosh HartCarmelo AnthonySurat Lok Sabha constituencyShah Rukh KhanFIFA World CupMadonnaMaidaanArne SlotATyler BertuzziOpinion polling for the 2024 Indian general electionRussiaArsenal F.C.Martin Luther King Jr.List of Marvel Cinematic Universe filmsFA CupWWEMalaysiaAlex GarlandElvis PresleyPakistanBill ClintonTommy Robinson (activist)Leicester City F.C.Dune (novel)El ClásicoBlink TwiceOpenAIAlan RitchsonDonald TrumpFighter (2024 film)Fallout (American TV series)Joe AlwynByeon Woo-seokAnya Taylor-JoyAngelina JolieNelly KordaApril 24Terence CrawfordElection Commission of IndiaThailandAlgebraic notation (chess)Jake GyllenhaalMark ZuckerbergHarry Potter69 (sex position)Chennai Super KingsJennifer PanCandace OwensPoor Things (film)MaltaKendrick LamarWorld Wide WebBen White (footballer)2024 Mutua Madrid Open – Women's singlesDan SchneiderMartin Ødegaard🡆 More