पृथ्वी का इतिहास: History of The Earth.

earth ek sanskrit sabad ha jiska arth ha ek vishal dhara nikalta ha

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)
पृथ्वी के इतिहास के युगों की सापेक्ष लंबाइयां प्रदर्शित करने वाले, भूगर्भीय घड़ी नामक एक चित्र में डाला गया भूवैज्ञानिक समय.

पृथ्वी का इतिहास 4.6 बिलियन वर्ष पूर्व पृथ्वी ग्रह के निर्माण से लेकर आज तक के इसके विकास की सबसे महत्वपूर्ण घटनाओं और बुनियादी चरणों का वर्णन करता है। प्राकृतिक विज्ञान की लगभग सभी शाखाओं ने पृथ्वी के इतिहास की प्रमुख घटनाओं को स्पष्ट करने में अपना योगदान दिया है। पृथ्वी की आयु ब्रह्माण्ड की आयु की लगभग एक-तिहाई है। उस काल-खण्ड के दौरान व्यापक भूगर्भीय तथा जैविक परिवर्तन हुए हैं इसकी खोज प्रिंस ने कीहेडियन और आर्कियन (Hadean and Archaean)

पृथ्वी के इतिहास का पहला युग, जिसकी शुरुआत लगभग 4.54 बिलियन वर्ष पूर्व (4.54 Ga) सौर-नीहारिका से हुई अभिवृद्धि के द्वारा पृथ्वी के निर्माण के साथ हुई, को हेडियन (Hadean) कहा जाता है। यह आर्कियन (Archaean) युग तक जारी रहा, जिसकी शुरुआत 3.8 Ga में हुई। पृथ्वी पर आज तक मिली सबसे पुरानी चट्टान की आयु 4.0 Ga मापी गई है और कुछ चट्टानों में मिले प्राचीनतम डेट्राइटल ज़र्कान कणों की आयु लगभग 4.4 Ga आंकी गई है, जो कि पृथ्वी की सतह और स्वयं पृथ्वी की रचना के आस-पास का काल-खण्ड है। चूंकि उस काल की बहुत अधिक सामग्री सुरक्षित नहीं रखी गई है, अतः हेडियन (Hadean) काल के बारे में बहुत कम जानकारी प्राप्त है, लेकिन वैज्ञानिकों का अनुमान है कि लगभग 4.53 Ga में, प्रारंभिक सतह के निर्माण के शीघ्र बाद, एक अधिक पुरातन-ग्रह का पुरातन-पृथ्वी पर प्रभाव पड़ा, जिसने इसके आवरण व सतह के एक भाग को अंतरिक्ष में उछाल दिया और चंद्रमा का जन्म हुआ।

हेडियन (Hadean) युग के दौरान, पृथ्वी की सतह पर लगातार उल्कापात होता रहा और बड़ी मात्रा में ऊष्मा के प्रवाह तथा भू-ऊष्मीय अनुपात (geothermal gradient) के कारण ज्वालामुखियों का विस्फोट भी भयंकर रहा होगा। डेट्राइटल ज़र्कान कण, जिनकी आयु 4.4 Ga आंकी गई है, इस बात का प्रमाण प्रस्तुत करते हैं कि द्रव जल के साथ उनका संपर्क हुआ था, जिसे इस बात का प्रमाण माना जाता है कि उस समय इस ग्रह पर महासागर या समुद्र पहले से ही मौजूद थे। अन्य आकाशीय पिण्डों पर प्राप्त ज्वालामुखी-विवरों की गणना के आधार पर यह अनुमान लगाया गया है कि उल्का-पिण्डों के अत्यधिक प्रभाव वाला एक काल-खण्ड, जिसे "लेट हेवी बॉम्बार्डमेन्ट (Late Heavy Bombardment)" कहा जाता है, का प्रारंभ लगभग 4.1 Ga में हुआ था और इसकी समाप्ति हेडियन के अंत के साथ 3.8 Ga के आस-पास हुई।

आर्कियन युग के प्रारंभ तक, पृथ्वी पर्याप्त रूप से ठंडी हो चुकी थी। आर्कियन के वातावरण, जिसमें ऑक्सीजन तथा ओज़ोन परत मौजूद नहीं थी, की रचना के कारण वर्तमान जीव-जंतुओं में से अधिकांश का अस्तित्व असंभव रहा होता। इसके बावजूद, ऐसा माना जाता है कि आर्कियन युग के प्रारंभिक काल में ही प्राथमिक जीवन की शुरुआत हो गई थी और कुछ संभावित जीवाष्म की आयु लगभग 3.5 Ga आंकी गई है। हालांकि, कुछ शोधकर्ताओं का अनुमान है कि जीवन की शुरुआत शायद प्रारंभिक हेडियन काल के दौरान, लगभग 4.4 Ga पूर्व, हुई होगी और पृथ्वी की सतह के नीचे हाइड्रोथर्मल छिद्रों में रहने के कारण वे संभावित लेट हेवी बॉम्बार्डमेंट काल में उनका अस्तित्व बच सका।

सौर मंडल की उत्पत्ति

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)
प्रोटोप्लेनेटरी डिस्क का एक कलाकार की छाप.

सौर मंडल (जिसमें पृथ्वी भी शामिल है) का निर्माण अंतरतारकीय धूल तथा गैस, जिसे सौर नीहारिका कहा जाता है, के एक घूमते हुए बादल से हुआ, जो कि आकाशगंगा के केंद्र का चक्कर लगा रहा था। यह बिग बैंग 13.7 Ga के कुछ ही समय बाद निर्मित हाइड्रोजन व हीलियम तथा अधिनव तारों द्वारा उत्सर्जित भारी तत्वों से मिलकर बना था। लगभग 4.6 Ga में, संभवतः किसी निकटस्थ अधिनव तारे की आक्रामक लहर के कारण सौर निहारिका के सिकुड़ने की शुरुआत हुई थी। संभव है कि इस तरह की किसी आक्रामक तरंग के कारण ही नीहारिका के घूमने व कोणीय आवेग प्राप्त करने की शुरुआत हुई हो। धीरे-धीरे जब बादल इसकी घूर्णन-गति को बढ़ाता गया, तो गुरुत्वाकर्षण तथा निष्क्रियता के कारण यह एक सूक्ष्म-ग्रहीय चकरी के आकार में रूपांतरित हो गया, जो कि इसके घूर्णन के अक्ष के लंबवत थी। इसका अधिकांश भार इसके केंद्र में एकत्रित हो गया और गर्म होने लगा, लेकिन अन्य बड़े अवशेषों के कोणीय आवेग तथा टकराव के कारण सूक्ष्म व्यतिक्रमों का निर्माण हुआ, जिन्होंने एक ऐसे माध्यम की रचना की, जिसके द्वारा कई किलोमीटर की लंबाई वाले सूक्ष्म-ग्रहों का निर्माण प्रारंभ हुआ, जो कि नीहारिका के केंद्र के चारों ओर घूमने लगे।

पदार्थों के गिरने, घूर्णन की गति में वृद्धि तथा गुरुत्वाकर्षण के दबाव ने केंद्र में अत्यधिक गतिज ऊर्जा का निर्माण किया। किसी अन्य प्रक्रिया के माध्यम से एक ऐसी गति, जो कि इस निर्माण को मुक्त कर पाने में सक्षम हो, पर उस ऊर्जा को किसी अन्य स्थान पर स्थानांतरित कर पाने में इसकी अक्षमता के परिणामस्वरूप चकरी का केंद्र गर्म होने लगा। अंततः हीलियम में हाइड्रोजन के नाभिकीय गलन की शुरुआत हुई और अंततः, संकुचन के बाद एक टी टौरी तारे (T Tauri Star) के जलने से सूर्य का निर्माण हुआ। इसी बीच, गुरुत्वाकर्षण के कारण जब पदार्थ नये सूर्य की गुरुत्वाकर्षण सीमाओं के बाहर पूर्व में बाधित वस्तुओं के चारों ओर घनीभूत होने लगा, तो धूल के कण और शेष सूक्ष्म-ग्रहीय चकरी छल्लों में पृथक होना शुरु हो गई। समय के साथ-साथ बड़े खण्ड एक-दूसरे से टकराये और बड़े पदार्थों का निर्माण हुआ, जो अंततः सूक्ष्म-ग्रह बन गये। इसमें केंद्र से लगभग 150 मिलियन किलोमीटर की दूरी पर स्थित एक संग्रह भी शामिल था: पृथ्वी. इस ग्रह की रचना (1% अनिश्चितता की सीमा के भीतर) लगभग 4.54 बिलियन वर्ष पूर्व हुई और इसका अधिकांश भाग 10-20 मिलियन वर्षों के भीतर पूरा हुआ। नवनिर्मित टी टौरी तारे की सौर वायु ने चकरी के उस अधिकांश पदार्थ को हटा दिया, जो बड़े पिण्डों के रूप में घनीभूत नहीं हुआ था।

कम्प्यूटर सिम्यूलेशन यह दर्शाते हैं कि एक सूक्ष्म-ग्रहीय चकरी से ऐसे पार्थिव ग्रहों का निर्माण किया जा सकता है, जिनके बीच की दूरी हमारे सौर-मण्डल में स्थित ग्रहों के बीच की दूरी के बराबर हो। अब व्यापक रूप से स्वीकार की जाने वाली नीहारिका की अवधारणा के अनुसार जिस प्रक्रिया से सौर-मण्डल के ग्रहों का उदय हुआ, वही प्रक्रिया ब्रह्माण्ड में बनने वाले सभी नये तारों के चारों ओर अभिवृद्धि चकरियों का निर्माण करती है, जिनमें से कुछ तारों से ग्रहों का निर्माण होता है ।

पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति

पुरातन-पृथ्वी का विकास अभिवृद्धि से तब तक होता ही रहा, जब तक कि सूक्ष्म-ग्रह का आंतरिक भाग पर्याप्त रूप से इतना गर्म नहीं हो गया कि भारी, लौह-धातुओं को पिघला सके। ऐसे द्रव धातु, जिनके घनत्व अब उच्चतर हो चुका था, पृथ्वी के भार के केंद्र में एकत्रित होने लगे। इस तथाकथित लौह प्रलय के परिणामस्वरूप एक पुरातन आवरण तथा एक (धातु का) केंद्र पृथ्वी के निर्माण के केवल 10 मिलियन वर्षों में ही पृथक हो गये, जिससे पृथ्वी की स्तरीय संरचना बनी और पृथ्वी के चुम्बकीय क्षेत्र का निर्माण हुआ।

पुरातन-ग्रह पर पदार्थों के संचयन के दौरान, गैसीय सिलिका के एक बादल ने अवश्य ही पृथ्वी को घेर लिया होगा, जो बाद में इसकी सतह पर ठोस चट्टानों के रूप में घनीभूत हो गया। अब इस ग्रह के आस-पास सौर-नीहारिका के प्रकाशीय (एटमोफाइल) तत्वों, जिनमें से अधिकांश हाइड्रोजन व हीलियम से बने थे, का एक प्रारंभिक वातावरण शेष रह गया, लेकिन सौर-वायु तथा पृथ्वी की उष्मा ने इस वातावरण को दूर हटा दिया होगा।

जब पृथ्वी की वर्तमान त्रिज्या में लगभग 40% की वृद्धि हुई तो इसमें परिवर्तन हुआ और गुरुत्वाकर्षण ने वातावरण को रोककर रखा, जिसमें पानी भी शामिल था।

विशाल संघात अवधारणा (The giant impact hypothesis)

    मुख्य आलेख: चंद्रमा की उत्पत्ति एवं विकास तथा विशाल संघात अवधारणा

पृथ्वी का अपेक्षाकृत बड़ा प्राकृतिक उपग्रह, चंद्रमा, अद्वितीय है। अपोलो कार्यक्रम के दौरान, चंद्रमा की सतह से चट्टानों के टुकड़े पृथ्वी पर लाए गए। इन चट्टानों की रेडियोमेट्रिक डेटिंग से यह पता चला है कि चंद्रमा की आयु 4527 ± 10 मिलियन वर्ष है, जो कि सौर मंडल के अन्य पिण्डों से लगभग 30 से 55 मिलियन वर्ष कम है। (नये प्रमाणों से यह संकेत मिलता है कि चंद्रमा का निर्माण शायद और भी बाद में, सौर मण्डल के प्रारंभ के 4.48±0.02 Ga, या 70–110 Ma बाद हुआ होगा। एक अन्य उल्लेखनीय विशेषता चंद्रमा का अपेक्षाकृत कम घनत्व है, जिसका अर्थ अवश्य ही यह होना चाहिये कि इसमें एक बड़ा धातु का केंद्र नहीं है, जैसा कि सौर-मण्डल के आकाशीय पिण्डों में होता है। चंद्रमा की रचना ऐसे पदार्थों से हुई है, जिनकी पृथ्वी के आवरण व ऊपरी सतह, पृथ्वी के केंद्र के बिना, से बहुत अधिक समानता है। इससे विशाल प्रभाव अवधारणा का जन्म हुआ है, जिसके अनुसार एक प्राचीन-ग्रह के साथ पुरातन-पृथ्वी के एक विशाल संघात के दौरान पुरातन-पृथ्वी तथा उस पर संघात करने वाले उस ग्रह की सतह पर हुए विस्फोट के द्वारा निकले पदार्थ से चंद्रमा की रचना हुई।

ऐसा माना जाता है कि वह संघातकारी ग्रह, जिसे कभी-कभी थेइया (Theia) भी कहा जाता है, आकार में वर्तमान मंगल ग्रह से थोड़ा छोटा रहा होगा। संभव है कि उसका निर्माण सूर्य व पृथ्वी से 150 मिलियन किलोमीटर दूर, उनके चौथे या पांचवे लैग्रेन्जियन बिंदु (Lagrangian point) पर पदार्थ के संचयन के द्वारा हुआ हो। शायद प्रारंभ में उसकी कक्षा स्थिर रही होगी, लेकिन पदार्थ के संचयन के कारण जब थेइया का भार बढ़ने लगा, तो वह असंतुलित हो गई होगी। लैग्रेन्जियन बिंदु के चारों ओर थेइया की घूर्णन-कक्षा बढ़ती गई और अंततः लगभग 4.533 Ga में वह पृथ्वी से टकरा गया। मॉडल यह दर्शाते हैं कि जब इस आकार का एक संघातकारी ग्रह एक निम्न कोण पर तथा अपेक्षाकृत धीमी गति (8-20 किमी/सेकंड) से पुरातन-पृथ्वी से टकराया, तो पुरातन-पृथ्वी तथा प्रभावकारी ग्रह की भीतरी परत व बाहरी आवरणों से निकला अधिकांश पदार्थ अंतरिक्ष में उछल गया, जहां इसमें से अधिकांश पृथ्वी के चारों ओर स्थित कक्षा में बना रहा। अंततः इसी पदार्थ ने चंद्रमा की रचना की। हालांकि, संघातकारी ग्रह के धातु-सदृश तत्व पृथ्वी के तत्व के साथ मिलकर इसकी सतह के नीचे चले गए, जिससे चंद्रमा धातु-सदृश तत्वों से वंचित रह गया। इस प्रकार विशाल संघात अवधारणा चंद्रमा की असामान्य संरचना को स्पष्ट करती है। संभव है कि पृथ्वी के चारों ओर स्थित कक्षा में उत्सर्जित पदार्थ दो सप्ताहों में ही एक पिण्ड के रूप में घनीभूत हो गया हो। अपने स्वयं के गुरुत्वाकर्षण के प्रभाव में, यह उत्सर्जित पदार्थ एक अधिक वृत्ताकार पिण्ड में बदल गया: चंद्रमा.

रेडियोमेट्रिक गणना यह दर्शाती है कि पृथ्वी का अस्तित्व इस संघात के कम से कम 10 मिलियन वर्ष पूर्व से ही था, जो कि पृथ्वी के प्रारंभिक आवरण व आंतरिक परत के बीच विभेद के लिये पर्याप्त अवधि है। इसके बाद, जब संघात हुआ, तो केवल ऊपरी आवरण के पदार्थ का ही उत्सर्जन हुआ, तथा पृथ्वी के आंतरिक आवरण में स्थित भारी साइडरोफाइल तत्व इससे अछूते ही रहे।

युवा पृथ्वी के लिये इस संघात के कुछ परिणाम बहुत महत्वपूर्ण थे। इससे ऊर्जा की एक बड़ी मात्रा निकली, जिससे पृथ्वी व चंद्रमा दोनों ही पूरी तरह पिघल गए। इस संघात के तुरंत बाद, पृथ्वी का आवरण अत्यधिक संवाहक था, इसकी सतह मैग्मा के एक बड़े महासागर में बदल गई थी। इस संघात के कारण ग्रह का पहला वातावरण अवश्य ही पूरी तरह नष्ट हो गया होगा। यह भी माना जाता है कि इस संघात के कारण पृथ्वी के अक्ष में भी परिवर्तन हो गया व इसमें 23.5° का अक्षीय झुकाव उत्पन्न हुआ, जो कि पृथ्वी पर मौसम के बदलाव के लिये ज़िम्मेदार है (ग्रह की उत्पत्तियों के एक सरल मॉडल का अक्षीय झुकाव 0° रहा होता और इसमें कोई मौसम नहीं रहे होते). इसने पृथ्वी के घूमने की गति भी बढ़ा दी होती.

महासागरों और वातावरण की उत्पत्ति

चूंकि विशाल संघात के तुरंत बाद पृथ्वी वातावरण-विहीन हो गई थी, अतः यह शीघ्र ठंडी हुई होगी। 150 मिलियन वर्षों के भीतर ही, बेसाल्ट की रचना वाली एक ठोस सतह अवश्य ही निर्मित हुई होगी। वर्तमान में मौजूद फेल्सिक महाद्वीपीय परत तब तक अस्तित्व में नहीं आई थी। पृथ्वी के भीतर, आगे विभेद केवल तभी शुरु हो सकता था, जब ऊपरी परत कम से कम आंशिक रूप से पुनः ठोस बन गई हो। इसके बावजूद, प्रारंभिक आर्कियन (लगभग 3.0 Ga) में ऊपरी सतह वर्तमान की तुलना में बहुत अधिक गर्म, संभवतः 1600 °C के लगभग, थी।

इस ऊपरी परत से भाप निकली और ज्वालामुखियों द्वारा और अधिक गैसों का उत्सर्जन किया गया, जिससे दूसरे वातावरण का निर्माण पूरा हुआ। उल्का के टकरावों के कारण अतिरिक्त पानी आयात हुआ, संभवतः बृहस्पति के गुरुत्वाकर्षण के प्रभाव के अंतर्गत आने वाले क्षुद्रग्रहों की बाहरी पट्टी से उत्सर्जित क्षुद्रग्रहों से.

केवल ज्वालामुखीय घटनाओं तथा गैसों के विघटन से पृथ्वी पर जल की इतनी बड़ी मात्रा का निर्माण कभी भी नहीं किया जा सकता था। ऐसा माना जाता है कि टकराने वाले धूमकेतुओं में बर्फ थी, जिनसे जल प्राप्त हुआ।:130-132 हालांकि वर्तमान में अधिकांश धूमकेतू कक्षा में सूर्य से नेपच्यून से भी अधिक दूरी पर हैं, लेकिन कम्प्यूटर सिम्यूलेशन यह दर्शाते हैं कि मूलतः वे सौर मण्डल के आंतरिक भागों में अधिक आम थे। हालांकि, पृथ्वी पर स्थित अधिकांश जल इससे टकराने वाले छोटे पुरातन-ग्रहों से व्युत्पन्न किया गया था, जिनकी तुलना बाहरी ग्रहों के वर्तमान छोटे बर्फीले चंद्रमाओं से की जा सकती है। इन पदार्थों की टक्कर से भौमिक ग्रहों (बुध, शुक्र, पृथ्वी तथा मंगल) पर जल, कार्बन डाइआक्साइड, मीथेन, अमोनिया, नाइट्रोजन व अन्य वाष्पशील पदार्थों में वृद्धि हुई होगी। यदि पृथ्वी पर उपस्थित समस्त जल केवल धूमकेतुओं से व्युत्पन्न था, तो इस सिद्धांत का समर्थन करने के लिये धूमकेतुओं के लाखों संघातों की आवश्यकता हुई होती. कम्प्यूटर सिम्यूलेशन यह दर्शाते हैं कि यह कोई अविवेकपूर्ण संख्या नहीं है।:131

ग्रह के ठंडे होते जाने पर, बादलों का निर्माण हुआ। वर्षा से महासागर बने। हालिया प्रमाण सूचित करते हैं कि 4.2 या उससे भी पूर्व 4.4 Ga तक महासागरों का निर्माण शुरु हो गया होगा। किसी भी स्थिति में, आर्कियन युग के प्रारंभ तक पृथ्वी पहले से ही महासागरों से ढंकी हुई थी। संभवतः इस नए वातावरण में जल-वाष्प, कार्बन डाइआक्साइड, नाइट्रोजन तथा कुछ मात्रा में अन्य गैसें मौजूद थीं। चूंकि सूर्य का उत्पादन वर्तमान मात्रा का केवल 70% था, अतः इस बात की संभावना सबसे अधिक है कि वातावरण में ग्रीनहाउस गैसों की बड़ी मात्राओं ने सतह पर मौजूद जल को जमने से रोका. मुक्त आक्सीजन सतह पर हाइड्रोजन या खनिजों के साथ बंधी हुई रही होगी। ज्वालामुखीय गतिविधियां तीव्र थीं और पराबैंगनी विकिरण के प्रवेश को रोकने के लिये ओज़ोन परत के अभाव में, सतह पर इसका बाहुल्य रहा होगा।

प्रारंभिक महाद्वीप

आवरण संवहन (Mantle convection), वर्तमान प्लेट टेक्टोनिक्स को संचालित करने वाली प्रक्रिया, केंद्र से पृथ्वी की सतह तक उष्मा के प्रवाह का परिणाम है। इसमें मध्य-महासागरीय मेड़ों पर सख़्त टेक्टोनिक प्लेटों का निर्माण शामिल है। सब्डक्शन क्षेत्रों (subduction zones) पर ऊपरी आवरण में सब्डक्शन के द्वारा ये प्लेटें नष्ट हो जाती हैं। हेडियन तथा आर्कियन युगों के दौरान पृथ्वी का भीतरी भाग अधिक गर्म था, अतः ऊपरी सतह पर कन्वेक्शन अवश्य ही तीव्रतर रहा होगा। जब वर्तमान प्लेट टेक्टोनिक्स जैसी कोई प्रक्रिया हुई होगी, तो यह इसकी गति और भी अधिक बढ़ गई होगी। अधिकांश भूगर्भशास्रियों का मानना है कि हेडियन व आर्कियन के दौरान, सब्डक्शन ज़ोन अधिक आम थे और इस कारण टेक्टोनिक प्लेटें आकार में छोटी थीं।

प्रारंभिक परत, जिसका निर्माण तब हुआ था, जब पृथ्वी की सतह पहली बार सख़्त हुई, हेडियन प्लेट टेक्टोनिक के इस तीव्र संयोजन तथा लेट हेवी बॉम्बार्डमेन्ट के गहन प्रभाव से पूरी तरह मिट गई। हालांकि, ऐसा माना जाता है कि वर्तमान महासागरीय परत की तरह ही यह परत बेसाल्ट से मिलकर बनी हुई होगी क्योंकि अभी तक इसमें बहुत कम परिवर्तन हुआ है। महाद्वीपीय परत, जो कि निचली परत में आंशिक गलन के दौरान हल्के तत्वों के विभेदन का एक उत्पाद थी, के पहले बड़े खण्ड हेडियन के अंतिम काल में, 4.0 Ga के लगभग बने। इन शुरुआती छोटे महाद्वीपों के अवशेषों को क्रेटन कहा जाता है। हेडियन युग के अंतिम भाग व आर्कियन युग के प्रारंभिक भाग के ये खण्डों ने उस सतह का निर्माण किया, जिस पर वर्तमान महाद्वीपों का विकास हुआ।


पृथ्वी पर प्राचीनतम चट्टानें कनाडा के नॉर्थ अमेरिकन क्रेटन पर प्राप्त हुई हैं। वे लगभग 4.0 Ga की टोनालाइट चट्टानें हैं। उनमें उच्च तापमान के द्वारा रूपांतरण के चिह्न दिखाई देते हैं, लेकिन साथ ही उनमें तलछटी में स्थित कण भी मिलते हैं, जो कि जल के द्वारा परिवहन के दौरान हुए घिसाव के कारण वृत्ताकार हो गए हैं, जिससे यह पता चलता है कि उस समय भी नदियों व सागरों का अस्तित्व था

क्रेटन मुख्यतः दो एकान्तरिक प्रकार की भौगोलिक संरचनाओं (terranes) से मिलकर बने होते हैं। पहली तथाकथित ग्रीनस्टोन पट्टिकाएं हैं, जो कि निम्न गुणवत्ता वाली रूपांतरित तलछटी चट्टानों से बनती हैं। ये "ग्रीनस्टोन" सब्डक्शन ज़ोन के ऊपर, वर्तमान में महासागरीय खाई में मिलने वाली तलछटी के समान होते हैं। यही कारण है कि कभी-कभी ग्रीनस्टोन को आर्कियन के दौरान सब्डक्शन के एक प्रमाण के रूप में देखा जाता है। दूसरा प्रकार रेतीली मैग्मेटिक चट्टानों का एक मिश्रण होता है। ये चट्टानें अधिकांशतः टोनालाइट, ट्रोन्डजेमाइट या ग्रैनोडायोराइट होती हैं, जो कि ग्रेनाइट जैसी बनावट वाली चट्टानें हैं (अतः ऐसी भौगोलिक संरचनाओं को टीटीजी-टेरेन कहा जाता है). टीटीजी-मिश्रणों को पहली महाद्वीपीय परत के अवशेषों के रूप में देखा जाता है, जिनका निर्माण बेसाल्ट में आंशिक गलन के कारण हुआ। ग्रीनस्टोन पट्टिकाओं तथा टीटीजी-मिश्रणों के बीच एकान्तरण की व्याख्या एक टेक्टोनिक परिस्थिति के रूप में की जाती है, जिसमें छोटे पुरातन-महाद्वीप सब्डक्टिंग ज़ोनों के एक संपूर्ण नेटवर्क के द्वारा पृथक किये गये थे।

जीवन की उत्पत्ति

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)
लगभग सभी ज्ञात जीवों में डी ऑक्सीराइबोन्यूक्लिक एसिड ही रेप्लिकेटर के रूप में कार्य कृहै। डीएनए अधिक मूल रेप्लिकेटर से बहुत अधिक जटिल है और इसकी प्रतिकृति सिस्टम अत्यधिक विस्तृत रहे हैं।

जीवन की उत्पत्ति का विवरण अज्ञात है, लेकिन बुनियादी स्थापित किये जा चुके हैं। जीवन की उत्पत्ति को लेकर दो विचारधारायें प्रचलित हैं। एक यह सुझाव देती है कि जैविक घटक अंतरिक्ष से पृथ्वी पर आए ("पैन्सपर्मिया" देखें), जबकि दूसरी का तर्क है कि उनकी उत्पत्ति पृथ्वी पर ही हुई। इसके बावजूद, दोनों ही विचारधारायें इस बारे में एक जैसी कार्यविधि का सुझाव देती हैं कि प्रारंभ में जीवन की उत्पत्ति कैसे हुई।

यदि जीवन की उत्पत्ति पृथ्वी पर हुई थी, तो इस घटना का समय अत्यधिक कल्पना आधारित है-संभवतः इसकी उत्पत्ति 4 Ga के लगभग हुई। यह संभव है कि उसी अवधि के दौरान उच्च ऊर्जा वाले क्षुद्रग्रहों की बमबारी के द्वारा महासागरों के लगातार होते निर्माण और विनाश के कारण जीवन एक से अधिक बार उत्पन्न व नष्ट हुआ हो।

प्रारंभिक पृथ्वी के ऊर्जाशील रसायन-शास्र में, एक अणु ने स्वयं की प्रतिलिपियां बनाने की क्षमता प्राप्त कर ली-एक प्रतिलिपिकार. (अधिक सही रूप में, इसने उन रासायनिक प्रतिक्रियाओं को प्रोत्साहित किया, जो स्वयं की प्रतिलिपि उत्पन्न करतीं थीं।) प्रतिलिपि सदैव ही सटीक नहीं होती थी: कुछ प्रतिलिपियां अपने अभिभावकों से थोड़ी-सी भिन्न हुआ करतीं थीं।

यदि परिवर्तन अणु की प्रतिलिपिकरण की क्षमता को नष्ट कर देता था, तो वह अणु कोई प्रतिलिपि उत्पन्न नहीं कर सकता था और वह रेखा "समाप्त" हो जाती थी। वहीं दूसरी ओर, कुछ दुर्लभ परिवर्तन अणु की प्रतिलिपि क्षमता को बेहतर या तीव्र बना सकते थे: उन "नस्लों" की संख्या बहुत अधिक बढ़ जाती थी और वे "सफल" हो जातीं थीं। यह अजैव पदार्थ पर उत्पत्ति का एक प्रारंभिक उदाहरण है। पदार्थ तथा अणुओं में उपस्थित अंतर ने एक निम्नतर ऊर्जा अवस्था की बढ़ने के प्रणालियों के वैश्विक स्वभाव के साथ संयोजित होकर प्राकृतिक चयन की एक प्रारंभिक विधि की अनुमति दी। जब कच्चे पदार्थों ("भोजन") का विकल्प समाप्त हो जाता था, तो नस्लें विभिन्न पदार्थों का प्रयोग कर सकतीं थीं, या संभवतः अन्य नस्लों के विकास को रोककर उनके संसाधनों को चुरा सकतीं थीं और अधिक व्यापक बन सकतीं थीं।:563-578

पहले प्रतिलिपिकार का स्वभाव अज्ञात है क्योंकि इसका कार्य लंबे समय से जीवन के वर्तमान प्रतिलिपिकार, डीएनए (DNA) द्वारा ले लिया गया था। विभिन्न मॉडल प्रस्तावित किये गये हैं, जो कि इस बात की व्याख्या करते हैं कि कोई प्रतिलिपिकार किस प्रकार विकसित हुआ होगा। विभिन्न प्रतिलिपिकारों पर विचार किया गया है, जिनमें आधुनिक प्रोटीन, न्यूक्लिक अम्ल, फॉस्फोलिपिड, क्रिस्टल, या यहां तक कि क्वांटम प्रणालियों जैसे जैविक रसायन शामिल हैं। अभी तक इस बात के निर्धारण का कोई तरीका उपलब्ध नहीं है कि क्या इनमें से कोई भी मॉडल पृथ्वी पर जीवन की उत्पत्ति के साथ निकट संबंध रखता है।

पुराने सिद्धांतों में से एक, वह सिद्धांत जिस पर कुछ विस्तार में कार्य किया गया है, इस बात के एक उदाहरण के रूप में कार्य करेगा कि यह कैसे हुआ होगा। ज्वालामुखी, आकाशीय बिजली तथा पराबैंगनी विकिरण रासायनिक प्रतिक्रियाओं को संचालित करने में सहायक हो सकते हैं, जिनसे मीथेन व अमोनिया जैसे सरल यौगिकों से अधिक जटिल अणु उत्पन्न किये जा सकते हैं।:38 इनमें से अनेक सरलतर जैविक यौगिक थे, जिनमें न्यूक्लियोबेस व अमीनो अम्ल भी शामिल हैं, जो कि जीवन के आधार-खण्ड हैं। जैसे-जैसे इस "जैविक सूप" की मात्रा व सघनता बढ़ती गई, विभिन्न अणुओं के बीच पारस्परिक क्रिया होने लगी। कभी-कभी इसके परिणामस्वरूप अधिक जटिल अणु प्राप्त होते थे-शायद मिट्टी ने जैविक पदार्थ को एकत्रित व घनीभूत करने के लिये एक ढांचा प्रदान किया हो। :39

कुछ अणुओं ने रासायनिक प्रतिक्रिया की गति बढ़ाने में सहायता की होगी। यह सब एक लंबे समय तक जारी रहा, प्रतिक्रियाएं यादृच्छिक रूप से होती रहीं, जब तक कि संयोग से एक प्रतिलिपिकार अणु उत्पन्न नहीं हो गया। किसी भी स्थिति में, किसी न किसी बिंदु पर प्रतिलिपिकार का कार्य डीएनए (DNA) ने अपने हाथों में ले लिया; सभी ज्ञात जीव (कुछ विषाणुओं व सूक्ष्म जीवाणुओं के अलावा) लगभग एक समान तरीके से अपने प्रतिलिपिकार के रूप में डीएनए (DNA) का प्रयोग करते हैं (जेनेटिक कोड देखें).

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)
कोशिकीय झिल्ली का एक छोटा अनुभाग.यह आधुनिक सेल झिल्ली अधिक मूल सरल फॉस्फोलिपिड द्वि-स्तरीय sara (दो पूंछ के साथ छोटे नीले क्षेत्रों) से अधिक परिष्कृत दूर है। प्रोटीन और कार्बोहाइड्रेट झिल्ली के माध्यम से सामग्री के गुज़रने के विनियमन में और वातावरण के लिए प्रतिक्रिया में विभिन्न कार्य करते हैं।

आधुनिक जीवन का प्रतिलिपिकारक पदार्थ एक कोशिकीय झिल्ली के भीतर रखा होता है। प्रतिलिपिकार की उत्पत्ति के बजाय कोशिकीय झिल्ली की उत्पत्ति को समझना अधिक सरल है क्योंकि एक कोशिकीय झिल्ली फॉस्फोलिपिड अणुओं से मिलकर बनी होती है, जो जल में रखे जाने पर अक्सर तुरंत ही दो परतों का निर्माण करते हैं। कुछ विशिष्ट शर्तों के अधीन, ऐसे अनेक वृत्त बनाये जा सकते हैं ("बुलबुलों का सिद्धांत (The Bubble Theory)" देखें).:40

प्रचलित सिद्धांत यह है कि झिल्ली का निर्माण प्रतिलिपिकार के बाद हुआ, जो कि तब तक शायद अपनी प्रतिलिपिकारक सामग्री व अन्य जैविक अणुओं के साथ आरएनए (RNA) था (आरएनए (RNA) विश्व अवधारणा). शुरुआती प्रोटोसेल का आकार बहुत अधिक बढ़ जाने पर शायद उनमें विस्फोट हो जाया करता होगा; इनसे छितरी हुई सामग्री शायद "बुलबुलों" के रूप में पुनः एकत्रित हो जाती होगी। प्रोटीन, जो कि झिल्ली को स्थिरता प्रदान करते थे, या जो बाद में सामान्य विभाजन में सहायता करते थे, ने उन कोशिका रेखाओं के प्रसरण को प्रोत्साहित किया होगा।

आरएनए (RNA) एक शुरुआती प्रतिलिपिकार हो सकता है क्योंकि यह आनुवांशिक जानकारी को संचित रखने का कार्य व प्रतिक्रियाओं को उत्प्रेरित करने का कार्य दोनों कर सकता है। किसी न किसी बिंदु पर आरएनए (RNA) से आनुवांशिक संचय की भूमिका डीएनए (DNA) ने ले ली और एन्ज़ाइम नामक प्रोटीन ने उत्प्रेरक की भूमिका ग्रहण कर ली, जिससे आरएनए (RNA) के पास केवल सूचना का स्थानांतरण करने, प्रोटीनों का संश्लेषण करने व इस प्रक्रिया का नियमन करने का ही कार्य बचा। यह विश्वास बढ़ता जा रहा है कि ये प्रारंभिक कोशिकाएं शायद समुद्र के नीचे स्थित ज्वालामुखीय छिद्रों, जिन्हें ब्लैक स्मोकर्स (black smokers) कहा जाता है,:42 से या यहां तक कि शायद गहराई में स्थिति गर्म चट्टानों के साथ उत्पन्न हुईं.:580

ऐसा माना जाता है कि प्रारंभिक कोशिकाओं की एक बहुतायत में से केवल एक श्रेणी ही शेष बची रह सकी। उत्पत्ति-संबंधी वर्तमान प्रमाण यह संकेत देते हैं कि अंतिम वैश्विक आम पूर्वज प्रारंभिक आर्कियन युग के दौरान, मोटे तौर पर शायद 3.5 Ga या उसके पूर्व, रहते थे। यह "लुका (Luca)" कोशिका आज पृथ्वी पर पाये जाने वाले समस्त जीवों का पूर्वज है। यह शायद एक प्रोकेरियोट (Prokaryote) था, जिसमें कोशिकीय झिल्ली तथा संभवतः कुछ राइबोज़ोम थे, लेकिन उसमें कोई केंद्र या झिल्ली से बंधा हुए कोई जैव-भाग (Organelles) जैसे माइटोकांड्रिया या क्लोरोप्लास्ट मौजूद नहीं थे।

सभी आधुनिक कोशिकाओं की तरह, यह भी अपने जैविक कोड के रूप में डीएनए (DNA) का, सूचना के स्थानांतरण व प्रोटीन संश्लेषण के लिये आरएनए (RNA) का, तथा प्रतिक्रियाओं को उत्प्रेरित करने के लिये एंज़ाइम का प्रयोग करता था। कुछ वैज्ञानिकों का मानना है कि अंतिम आम वैश्विक पूर्वज कोई एकल जीव नहीं था, बल्कि वह पार्श्विक जीन स्थानांतरण में जीनों का आदान-प्रदान करने वाले जीवों की एक जनसंख्या थी।

डार्विन ने अपनी बीगल नमक जहाज की यात्रा के दौरान चार टिप्पणी की I

  1. सभी जीव अत्याधिक संतानोत्पति करते हैं जो शायद जीवित भी नहीं रह पाते I (उदाहरनार्थ - मेढ़क के कुछ अंडे ही जीवित रह कर मेढ़क बनते हैं )
  2. असल में जनसंख्या लम्बी अवधि में भी लगभग स्थिर रहती है I
  3. वास्तव में अतिरिक्त एक प्रजाति के जीवों के गुणों में भी विभिन्नताएं होती है I
  4. इनमे से कुछ विभिन्नताएं वंशानुगत होती है और अगली पीढ़ी में चली जाति है I

प्रोटेरोज़ोइक युग

प्रोटेरोज़ोइक (Proterozoic) पृथ्वी के इतिहास का वह युग है, जो 2.5 Ga से 542 Ma तक चला. इसी अवधि में क्रेटन वर्तमान आकार के महाद्वीपों के रूप में विकसित हुए. पहली बार आधुनिक अर्थों में प्लेट टेक्टोनिक्स की घटना हुई। ऑक्सीजन से परिपूर्ण एक वातावरण की ओर परिवर्तन एक निर्णायक विकास था। प्रोकेरियोट (prokaryotes) से यूकेरियोट (eukaryote) और बहुकोशीय रूपों में जीवन का विकास हुआ। प्रोटेरोज़ोइक काल के दौरान दो भीषण हिम-युग देखें गये, जिन्हें स्नोबॉल अर्थ (Snowball Earths) कहा जाता है। लगभग 600 Ma में, अंतिम स्नोबॉल अर्थ की समाप्ति के बाद, पृथ्वी पर जीवन की गति तीव्र हुई। लगभग 580 Ma में, कैम्ब्रियन विस्फोट के साथ एडियाकारा बायोटा (Ediacara biota) की शुरुआत हुई।

ऑक्सीजन क्रांति

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
सूर्य की ऊर्जा का काम में लाने से पृथ्वी पर जीवन में कई प्रमुख बदलाव हो जाते हैं।
पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
भूगर्भिक समय के माध्यम से वायुमंडलीय ऑक्सीजन के अनुमानित आंशिक दबाव की श्रेणी को ग्राफ दिखा रहा है [64]
पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
3.15 गा मूरिज़ ग्रुप से एक पट्टित लोहा बनाने का निर्माण, बार्बर्टन ग्रीनस्टोन बेल्ट, दक्षिण अफ्रीका.लाल परतें उन अवधियों को बताती हैं, जब ऑक्सीजन उपलब्ध था, ग्रे परतें ऑक्सीजन की अनुपस्थिति वाली परिस्थितियों में बनीं.

शुरुआती कोशिकाएं शायद विषमपोषणज (Heterotrophs) थीं और वे कच्चे पदार्थ तथा ऊर्जा के एक स्रोत के रूप में चारों ओर के जैविक अणुओं (जिनमें अन्य कोशिकाओं के अणु भी शामिल थे) का प्रयोग करती थी।:564-566 जैसे-जैसे भोजन की आपूर्ति कम होती गई, कुछ कोशिकाओं में एक नई रणनीति विकसित हुई। मुक्त रूप से उपलब्ध जैविक अणुओं की समाप्त होती मात्राओं पर निर्भर रहने के बजाय, इन कोशिकाओं ने ऊर्ज के स्रोत के रूप में सूर्य-प्रकाश को अपना लिया। हालांकि अनुमानों में अंतर है, लेकिन लगभग 3 Ga तक, शायद वर्तमान ऑक्सीजन-युक्त संश्लेषण जैसा कुछ न कुछ विकसित हो गया था, जिसने सूर्य कि ऊर्जा न केवल स्वपोषणजों (Autotrophs) के लिये, बल्कि उन्हें खाने वाले विषमपोषणजों के लिये भी उपलब्ध करवाई. इस प्रकार का संश्लेषण, जो कि तब तक सबसे आम बन चुका था, कच्चे माल के रूप में प्रचुर मात्रा में मौजूद कार्बन डाइआक्साइड और पानी का उपयोग करता थ और सूर्य के प्रकाश की ऊर्जा के साथ, ऊर्जा की प्रचुरता वाले जैविक अणु (कार्बोहाइड्रेट) उत्पन्न करता था।

इसके अलावा, इस संश्लेषण के एक अपशिष्ट उत्पाद के रूप में ऑक्सीजन उतसर्जित किया जाता था। सबसे पहले, यह चूना-पत्थर, लोहा और अन्य खनिजों के साथ बंधा. इस काल की भूगर्भीय परतों में मिलने वाले लौह-आक्साइड की प्रचुर मात्रा वाले स्तरों में इस बात के पर्याप्त प्रमाण मौजूद हैं। ऑक्सीजन के साथ खनिजों की प्रतिक्रिया के कारण महासागरों का रंग हरा हो गया होगा। जब उजागर होने वाले खनिजों में से तुरंत प्रतिक्रिया करने वाले अधिकांश खनिजों का ऑक्सीकरण हो गया, तो अंततः ऑक्सीजन वातावरण में एकत्र होने लगी। हालांकि प्रत्येक कोशिका ऑक्सीजन की केवल एक छोटी-सी मात्रा ही उत्पन्न करती थी, लेकिन एक बहुत बड़ी अवधि तक अनेक कोशिकाओं के संयुक्त चयापचय ने पृथ्वी के वातावरण को इसकी वर्तमान स्थिति में रूपांतरित कर दिया। :50-51 ऑक्सीजन-उत्पादक जैव रूपों के सबसे प्राचीन उदाहरणों में जीवाष्म स्ट्रोमेटोलाइट शामिल हैं। यह पृथ्वी के तीसरा वातावरण था।

अंतर्गामी पराबैंगनी विकिरण के प्रोत्साहन से कुछ ऑक्सीजन ओज़ोन में परिवर्तित हुआ, जो कि वातावरण के ऊपरी भाग में एक परत में एकत्र हो गई। ओज़ोन परत ने पराबैंगनी विकिरण की एक बड़ी मात्रा, जो कि किसी समय वातावरण को भेद लेती थी को अवशोषित कर लिया और यह आज भी ऐसा करती है। इससे कोशिकाओं को महासागरों की सतह पर अंततः भूमि पर कालोनियां बनाने का मौका मिला: ओज़ोन परत के बिना, सतह पर बमबारी करने वाले पराबैंगनी विकिरण ने उजागर हुई कोशिकाओं में उत्परिवर्तन के अरक्षणीय स्तर उत्पन्न कर दिये होते.

प्रकाश संश्लेषण का एक अन्य, मुख्य तथा विश्व को बदल देने वाला प्रभाव था। ऑक्सीजन विषाक्त था; "ऑक्सीजन प्रलय" के नाम से जानी जाने वाली घटना में इसका स्तर बढ़ जाने पर संभवतः पृथ्वी पर मौजूद अधिकांश जीव समाप्त हो गए। प्रतिरोधी जीव बच गए और पनपने लगे और इनमें से कुछ ने चयापचय में वृद्धि करने के लिये ऑक्सीजन का प्रयोग करने व उसी भोजन से अधिक ऊर्जा प्राप्त करने की क्षमता विकसित कर ली।

स्नोबॉल अर्थ और ओजोन परत की उत्पत्ति

प्रचुर ऑक्सीजन वाले वातावरण के कारण जीवन के लिये दो मुख्य लाभ थे। अपने चयापचय के लिये ऑक्सीजन का प्रयोग न करने वाले जीव, जैसे अवायुजीवीय जीवाणु, किण्वन को अपने चयापचय का आधार बनाते हैं। ऑक्सीजन की प्रचुरता श्वसन को संभव बनाती है, जो किण्वन की तुलना में जीवन के लिये एक बहुत अधिक प्रभावी ऊर्जा स्रोत है। प्रचुर ऑक्सीजन वाले वातावरण का दूसरा लाभ यह है कि ऑक्सीजन उच्चतर वातावरण में ओज़ोन का निर्माण करती है, जिससे पृथ्वी की ओज़ोन परत का आविर्भाव होता है। ओज़ोन परत पृथ्वी की सतह को जीवन के लिये हानिकारक पराबैंगनी विकिरण से बचाती है। ओज़ोन की इस परत के बिना, बाद में अधिक जटिल जीवन का विकास शायद असंभव रहा होता। :219-220

सूर्य के स्वाभाविक विकास ने आर्कियन व प्रोटेरोज़ोइक युगों के दौरान इसे क्रमशः अधिक चमकीला बना दिया; सूर्य की चमक एक करोड़ वर्षों में 6% बढ़ जाती है।:165 इसके परिणामस्वरूप, प्रोटेरोज़ोइक युग में पृथ्वी को सूर्य से अधिक उष्मा प्राप्त होने लगी। हालांकि, इससे पृथ्वी अधिक गर्म नहीं हुई। इसके बजाय, भूगर्भीय रिकॉर्ड यह दर्शाते हुए लगते हैं कि प्रोटेरोज़ोइक काल के प्रारंभिक दौर में यह नाटकीय ढंग से ठंडी हुई। सभी क्रेटन्स पर पाये जाने वाले हिमनदीय भण्डार दर्शाते हैं कि 2.3 Ga के आस-पास, पृथ्वी पर पहला हिम-युग आया (मेक्गैन्यीन हिम-युग). कुछ वैज्ञानिकों के अनुसार यह तथा इसके बाद प्रोटेरोज़ोइक हिम युग इतने अधिक भयंकर थे कि इनके कारण ग्रह ध्रुवों से लेकर विषुवत् तक पूरी तरह जम गया था, इस अवधारणा को स्नोबॉल अर्थ कहा जाता है। सभी भूगर्भशास्री इस परिदृश्य से सहमत नहीं हैं और प्राचीन, आर्कियन हिम युगों का अनुमान भी लगाया गया है, लेकिन हिम युग 2.3 Ga ऐसी पहली घटना है, जिसके लिये प्रमाण को व्यापक रूप से स्वीकार किया जाता है।

2.3 Ga के हिम युग का प्रत्यक्ष कारण शायद वातावरण में ऑक्सीजन की बढ़ी हुई मात्रा रही होगी, जिससे वातावरण में मीथेन (CH4) की मात्रा घट गई। मीथेन एक शक्तिशाली ग्रीनहाउस गैस है, लेकिन ऑक्सीजन इसके साथ प्रतिक्रिया करके CO2 का निर्माण करता है, जो कि एक कम प्रभावी ग्रीनहाउस गैस है।:172 जब मुक्त ऑक्सीजन वातावरण में उपलब्ध हो गई, तो मीथेन का घनत्व नाटकीय रूप से घट गया होगा, जो कि सूर्य की ओर से आती उष्मा के बढ़ते प्रवाह का सामना करने के लिये पर्याप्त था।

जीवन का प्रोटेरोज़ोइक विकास

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
कुछ ऐसे संभावित मार्ग, जिनसे विभिन्न एंडो सिम्बीयंट का जन्म हुआ हो सकता है।

आधुनिक वर्गीकरण जीवन को तीन क्षेत्रों में विभाजित करता है। इन क्षेत्रों की उत्पत्ति का काल अज्ञात है। संभवतः सबसे पहले जीवाणु क्षेत्र जीवन के अन्य रूपों से अलग हुआ (जिसे कभी-कभी नियोम्यूरा कहा जाता है), लेकिन यह अनुमान विवादित है। इसके शीघ्र बाद, 2 Ga तक, नियोम्युरा आर्किया तथा यूकेरिया में विभाजित हो गया। यूकेरियोटिक कोशिकाएं (यूकेरिया) प्रोकेरियोटिक कोशिकाओं (जीवाणु तथा आर्किया) से अधिक बड़ी व अधिक जटिल होती हैं और उस जटिलता की उत्पत्ति केवल अब ज्ञात होनी प्रारंभ हुई है।

इस समय तक, शुरुआती प्रोटो-माइटोकॉन्ड्रियन का निर्माण हो चुका था। वर्तमान रिकेट्सिया से संबंधित एक जीवाण्विक कोशिका, जिसने ऑक्सीजन का चयापचय करना सीख लिया था, ने एक बड़ी प्रोकेरियोटिक कोशिका में प्रवेश किया, जिसमें वह क्षमता उपलब्ध नहीं थी। संभवतः बड़ी कोशिका ने छोटी कोशिका को खा लेने का प्रयास किया, लेकिन (संभवतः शिकार में रक्षात्मकता की उत्पत्ति के कारण) वह कोशिश विफल रही। हो सकता है कि छोटी कोशिका ने बड़ी कोशिका का परजीवी बनने का प्रयास किया हो। किसी भी स्थिति में, छोटी कोशिका बड़ी कोशिका से बच गई। ऑक्सीजन का प्रयोग करके, इसने बड़ी कोशिका के अवशिष्ट पदार्थों का चयापचय किया और अधिक ऊर्जा प्राप्त की। इसकी अतिरिक्त ऊर्जा में से कुछ मेजबान को लौटा दी गई। बड़ी कोशिका के भीतर छोटी कोशिका का प्रतिलिपिकरण हुआ। शीघ्र ही, बड़ी कोशिका व उसके भीतर स्थित छोटी कोशिकाओं के बीच एक स्थिर सहजीविता विकसित हो गई। समय के साथ-साथ मेजबान कोशिका ने छोटी कोशिका के कुछ जीन ग्रहण कर लिये और अब ये दोनों प्रकार एक-दूसरे पर निर्भर बन गए: बड़ी कोशिका छोटी कोशिकाओं द्वारा उत्पन्न की जाने वाली ऊर्जा के बिना जीवित नहीं रह सकती थी और दूसरी ओर छोटी कोशिकाएं बड़ी कोशिका द्वारा प्रदान किये जाने वाले कच्चे माल के बिना जीवित नहीं रह सकतीं थीं। पूरी कोशिका को अब एक एकल जीव माना जाता है और छोटी कोशिकाओं को माइटोकॉन्ड्रिया नामक अंगों के रूप में वर्गीकृत किया गया है।

इसी तरह की एक घटना प्रकाश-संश्लेषक साइनोबैक्टेरिया के साथ हुई, जिसने बड़ी विषमपोषणज कोशिकाओं में प्रवेश किया और क्लोरोप्लास्ट बन गई।:60-61 :536-539 संभवतः इन परिवर्तनों के परिणामस्वरूप, कोशिकाओं की प्रकाश-संश्लेषण में सक्षम एक श्रृंखला एक बिलियन से भी अधिक वर्ष पूर्व यूकेरियोट्स से अलग हो गई। संभवतः समावेशन की ऐसी अनेक घटनाएं हुईं, जैसा कि चित्र सही रूप से संकेत करते हैं। माइटोकॉन्ड्रिया व क्लोरोप्लास्ट की कोशिकीय उत्पत्ति के सुस्थापित एन्डोसिम्बायोटिक सिद्धांत के अलावा, यह सुझाव भी दिया जाता रहा है कि कोशिकाओं से पेरॉक्सीज़ोमेस का निर्माण हुआ, स्पाइरोकीटस से सिलिया व फ्लैजेला का निर्माण हुआ और शायद एक डीएनए (DNA) विषाणु से कोशिका के नाभिक का विकास हुआ,, हालांकि इनमें से कोई भी सिद्धांत व्यापक रूप से स्वीकृत नहीं है।

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
जीनस वौल्वेक्स के ग्रीन शैवाल को पहले बहुकोशीय पौधों के समान माना जाता है।

आर्किया, जीवाणु व यूकेरियोट्स में विविधता जारी रही और वे अधिक जटिल और अपने-अपने वातावरणों के साथ बेहतर ढंग से अनुकूलित बनते गए। प्रत्येक क्षेत्र लगातार अनेक प्रकारों में विभाजित होता रहा, हालांकि आर्किया व जीवाणुओं के इतिहास के बारे में बहुत थोड़ी-सी जानकारी ही प्राप्त है। 1.1 Ga के लगभग, सुपरकॉन्टिनेन्ट रॉडिनिया एकत्रित हो रहा था। वनस्पति, जीव-जंतु तथा कवक सभी विभाजित हो गए थे, हालांकि अभी भी वे एकल कोशिकाओं के रूप में मौजूद थे। इनमें से कुछ कालोनियों में रहने लगे और क्रमशः कुछ श्रम-विभाजन होने लगा; उदाहरण के लिये, संभव है कि परिधि की कोशिकाओं ने आंतरिक कोशिकाओं से कुछ भिन्न भूमिकाएं ले लीं हों. हालांकि, विशेषीकृत कोशिकाओं वाली एक कालोनी तथा एक बहुकोषीय जीव के बीच विभाजन सदैव ही स्पष्ट नहीं होता, लेकिन लगभग 1 बिलियन वर्ष पूर्व पहली बहुकोशीय वनस्पति उत्पन्न हुई, जो शायद हरा शैवाल था। संभवतः 900 Ma :488 के लगभग पशुओं में भी वास्तविक बहुकोशिकता की शुरुआत हो चुकी थी।

प्रारंभ में शायद यह वर्तमान स्पंज की तरह दिखाई देता होगा, जिसमें ऐसी सर्वप्रभावी कोशिकाएं थीं, जिन्होंने एक अस्त-व्यस्त जीव को स्वयं को पुनः एकत्रित करने का मौका दिया। :483-487 चूंकि बहुकोशिकीय जीवों की सभी श्रेणियों में कार्य-विभाजन पूर्ण हो चुका था, इसलिये कोशिकाएं अधिक विशेषीकृत व एक दूसरे पर अधिक निर्भर बन गईं; अलग-थलग पड़ी कोशिकाएं समाप्त हो जातीं.

रोडिनिया व अन्य सुपरकॉन्टिनेन्ट

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
1 Ga से एक विल्सन समयरेखा, जिसमें रोडिनिया और पैन्जाइया महाद्वीपों का निर्माण और विभाजन चित्रित है।

1960 के आस-पास जब प्लेट टेक्टोनिक्स का विकास हुआ, तो भूगर्भशास्रियों ने अतीत में महाद्वीपों की गतिविधियों व स्थितियों का पुनर्निर्माण करना प्रारंभ किया। लगभग 250 मिलियन वर्ष पूर्व तक के लिये यह अपेक्षाकृत सरल प्रतीत हुआ, जब सभी महाद्वीप "सुपरकॉन्टिनेन्ट" पैन्जाइया के रूप में संगठित थे। उस समय से पूर्व, पुनर्निर्माण महासागरीय सतहों के काल या तटों में दिखाई देने वाली समानताओं पर निर्भर नहीं रह सकते थे, बल्कि वे केवल भूगर्भीय निरीक्षणों तथा पैलियोमैग्नेटिक डेटा पर ही निर्भर थे।:95

पृथ्वी के पूरे इतिहास में, ऐसे कालखण्ड आते रहे हैं, जब महाद्वीपीय भार एक सुपरकॉन्टिनेन्ट का निर्माण करने के लिये एकत्रित हुआ, जिसके बाद सुपरकॉन्टिनेन्ट का विघटन हुआ और पुनः नये महाद्वीप दूर-दूर जाने लगे। टेक्टोनिक घटनाओं के इस दोहराव को विल्सन चक्र कहा जाता है। समय में हम जितना पीछे जाते हैं, डेटा की व्याख्य करना उतना ही अधिक दुर्लभ और कठिन होता जाता है। कम से कम यह स्पष्ट है कि लगभग 1000 से 830 Ma में, अधिकांश महाद्वीपीय भार सुपरकॉन्टिनेन्ट रोडिनिया में संगठित था। इस बात की बहुत अधिक संभावना है कि रोडिनिया पहला सुपरकॉन्टिनेन्ट नहीं था और अनेक पुराने सुपरकॉन्टिनेन्ट भी प्रस्तावित किये गये हैं। इसका अर्थ यह है कि वर्तमान प्लेट टेक्टोनिक जैसी प्रक्रियाएं प्रोटेरोज़ोइक के दौरान भी सक्रिय रही थीं।

800 Ma के लगभग रोडिनिया के विघटन के बाद, यह संभव है कि महाद्वीप 500 Ma के लगभग पुनः जुड़ गए हों. इस काल्पनिक सुपरकॉन्टिनेन्ट को कभी-कभी पैनोशिया या वेन्डिया कहा जाता है। इसका प्रमाण महाद्वीपीय टकराव का एक चरण है, जिसे पैन-अफ्रीकन ओरोजेनी (Pan-African orogeny) कहा जाता है, जिसमें वर्तमान अफ्रीका, दक्षिणी-अमेरिका, अंटार्कटिका और आस्ट्रेलिया के महाद्वीपीय भार संयोजित थे। हालांकि इस बात की बहुत अधिक संभावना है कि महाद्वीपीय भारों का एकत्रीकरण पूर्ण नहीं हुआ था क्योंकि लॉरेन्शिया नामक एक महाद्वीप (जो कि मोटे तौर पर वर्तमान उत्तरी-अमेरिका के आकार के बराबर था) 610 Ma के लगभग ही टूटकर अलग होना शुरु हो चुका था। कम से कम इतना तो निश्चित है कि प्रोटेरोज़ोइक युग के अंत तक, अधिकांश महाद्वीपीय भार दक्षिणी ध्रुव के आस-पास एक स्थिति में संगठित रहा।

उत्तर-प्रोटेरोज़ोइक मौसम तथा जीवन

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
स्प्रिन्जीना फ्लाउन्देंसी, एडियाकरण काल का एक पशु, का 580 मिलियन वर्ष पुराना एक जीवाश्म.जीवों के ऐसे रूप कैम्ब्रियन विस्फोट से उत्पन्न अनेक नए रूपों के पूर्वज हो सकते हैं।

प्रोटेरोज़ोइक काल के अंत में कम से कम दो स्नोबॉल अर्थ देखे गए, जो इतने भयंकर थे कि महासागरों की सतह पूरी तरह जम गई होगी। यह लगभग 710 और 640 Ma में, क्रायोजेनियन काल में हुआ। प्रारंभिक प्रोटेरोज़ोइक स्नोबॉल अर्थ की तुलना में भयंकर हिमनदीकरणों की व्याख्या कर पाना कम सरल है। अधिकांश पुरामौसमविज्ञानियों का मानना है कि सुपरकॉन्टिनेन्ट रोडिनिया के निर्माण से इन शीत घटनाओं का कोई न कोई संबंध अवश्य है। चूंकि रोडिनिया विषुवत् पर केंद्रित था, अतः रासायनिक मौसम की दरों में वृद्धि हुई और कार्बन डाइआक्साइड (CO2) वातावरण से निकाल ली गई। चूंकि CO2 एक महत्वपूर्ण ग्रीनहाउस गैस है, अतः पूरी पृथ्वी पर मौसम ठंडा हो गया।

इसी प्रकार, स्नोबॉल अर्थ के दौरान अधिकांश महाद्वीपीय सतह स्थाई रूप से बर्फ से जमी हुई (permafrost) थी, जिसने पुनः रासायनिक मौसम को कम किया, जिससे हिमनदीकरण का अंत हो गया। एक वैकल्पिक अवधारणा यह है कि ज्वालामुखीय विस्फोटों से इतनी पर्याप्त मात्रा में कार्बन डाइआक्साइड निकली कि इसके परिणामस्वरूप उत्पन्न हुए ग्रीनहाउस प्रभाव ने वैश्विक स्तर पर तापमानों में वृद्धि कर दी। लगभग उसी समय रोडिनिया के विघटन के कारण ज्वालामुखीय गतिविधियों में वृद्धि हो गई।

एडियाकरन (Ediacaran) काल के बाद क्रायोजेनियन (Cryogenia) काल आया, जिसकी पहचान नये बहुकोशीय जीवों के तीव्र विकास के द्वारा की जाती है। यदि भयंकर हिम युगों तथा जीवन की विविधता में वृद्धि के बीच कोई संबंध है, तो वह अभी तक स्पष्ट नहीं है, लेकिन यह संयोगात्मक नहीं दिखाई देता. जीवन के नए रूप, जिन्हें एडियाकारा बायोटा कहा जाता है, तब तक के सबसे बड़े और सबसे विविध रूप थे। अधिकांश वैज्ञानिकों का मानना है कि उनमें से कुछ बाद वाले कैम्ब्रियन काल के जीवन के नये प्रकारों के पूर्ववर्ती रहे होंगे। हालांकि अधिकांश एडियाकरन जीवों का वर्गीकरण अस्पष्ट है, लेकिन ऐसा प्रस्तावित किया गया है कि उनमें से कुछ आधुनिक जीवन के समूहों के पूर्वज रहे थे। मांसपेशीय तथा तंत्रिकीय कोशिकाओं की उत्पत्ति महत्वपूर्ण विकास थे। एडियाकरन जीवाश्मों में से किसी में भी कंकालों जैसे सख्त शारीरिक भाग नहीं थे। सबसे पहली बार ये प्रोटेरोज़ोइक तथा फैनेरोज़ोइक युगों अथवा एडियाकरन और कैम्ब्रियन अवधियों के बाद दिखाई दिये।

पैलियोज़ोइक युग

पैलियोज़ोइक युग (अर्थ: जीवन के पुरातन रूपों का युग) फैनेरोज़ोइक कल्प का प्रथम युग था, जो कि 542 से 251 Ma तक चला. पैलियोज़ोइक के दौरान, जीवन के अनेक आधुनिक समूह अस्तित्व में आए। पृथ्वी पर जीवन की कालोनियों की शुरुआत हुई, पहले वनस्पति, फिर जीव-जंतु. सामान्यतः जीवन का विकास धीमी गति से हुआ। हालांकि, कभी-कभी अचानक नई प्रजातियों के विकिरण या सामूहिक लोप की घटनाएं होती हैं। विकास के ये विस्फोट अक्सर वातावरण में होने वाले अप्रत्याशित परिवर्तनों के कारण होते थे, जिनका कारण ज्वालामुखी गतिविधि, उल्का-पिण्डों के प्रभाव या मौसम में परिवर्तन जैसी प्राकृतिक आपदाएं हुआ करतीं थीं।

प्रोटेरोज़ोइक के अंतिम काल में पैनोशिया तथा रोडिनिया के विघटन पर निर्मित महाद्वीप पैलियोज़ोइक के दौरान धीरे-धीरे पुनः सरकने वाले थे। इसका परिणाम अंततः पर्वतों के निर्माण के चरणों के रूप में मिलने वाला था, जिसने पैलियोज़ोइक के अंतिम काल में सुपरकॉन्टिनेन्ट पैन्जाइया का निर्माण किया।

कैम्ब्रियन विस्फोट

ऐसा प्रतीत होता है कि कैम्ब्रियन काल (542-488 Ma) में जीवन की उत्पत्ति की दर बढ़ गई। इस अवधि में अनेक नई प्रजातियों, फाइला, तथा रूपों की अचानक हुई उत्पत्ति को कैम्ब्रियन विस्फोट कहा जाता है। कैम्ब्रियन विस्फोट में जैविक फॉर्मेन्टिंग उस समय तक अभूतपूर्व थी और आज भी है।:229 हालांकि एडियाकरन जीवन रूप उससे भी पुरातन हैं और उन्हें किसी भी आधुनिक समूह में सरलता से नहीं रखा जा सकता, लेकिन फिर भी कैम्ब्रियन के अंत में अधिकांश आधुनिक फाइला पहले से ही मौजूद थे। घोंघे, एकिनोडर्म, क्राइनॉइड तथा आर्थ्रोपॉड्स (निम्न पैलियोज़ोइक से आर्थोपॉड्स का एक प्रसिद्ध समूह ट्रायलोबाइड्स हैं) जैसे जीवों में शरीर के ठोस अंगों, जैसे कवचों, कंकालों या बाह्य-कंकालों के विकास ने उनके प्रोटेरोज़ोइक पूर्वजों की तुलना में जीवन के ऐसे रूपों का संरक्षण व जीवाष्मीकरण अधिक सरल बना दिया। यही कारण है कि पुराने युगों की तुलना में कैम्ब्रियन तथा उसके बाद के जीवन के बारे में बहुत अधिक जानकारी उपलब्ध है। कैम्ब्रियन तथा ऑर्डोविशियन (बाद वाला युग, 488-444 Ma) के बीच की सीमा को बड़े पैमाने पर हुए सामूहिक विलोपन के द्वारा पहचाना जाता है, जिसमें कुछ नये समूह पूरी तरह अदृश्य हो गए। इन कैम्ब्रियन समूहों में से कुछ बहुत जटिल दिखाई देते हैं, लेकिन वे आधुनिक जीवों से बहुत भिन्न हैं; इनके उदाहरण ऐनोमैलोकेरिस तथा हाईकाउश्थिस हैं।

कैम्ब्रियन के दौरान, पहले कशेरुकी जीवों, उनमें भी सबसे पहले मछ्लियों, का जन्म हो चुका था। पिकाइया एक ऐसा प्राणी है, जो मछ्लियों का पूर्वज हो सकता है या शायद निकटता से संबंधित हो सकता है। उसमें एक आद्यपृष्ठवंश (notochord) था, संभवतः यही संरचना बाद में रीढ़ की हड्डी के रूप में विकसित हुई होगी। जबड़ों वाली शुरुआती मछलियां (ग्नैथोस्टोमेटा) ऑर्डोविशियन के दौरान उत्पन्न हुईं. नये स्थानों पर कालोनियां बनाने का परिणामस्वरूप शरीर का आकार बहुत विशाल हो गया। इस प्रकार, प्रारंभिक पैलियोज़ोइक के दौरान बढ़ते आकार वाली मछलियां उत्पन्न हुईं, जैसे टाइटैनिक प्लेसोडर्म डंक्लीओस्टीयस, जो कि 7 मीटर तक लंबाई वाली हो सकती थीं।

पैलियोज़ोइक टेक्टोनिक्स, पैलियो-भूगोल तथा मौसम

प्रोटेरोज़ोइक के अंत में, सुपरकॉन्टिनेन्ट पैनोशिया छोटे महाद्वीपों लॉरेन्शिया, बाल्टिका, साइबेरिया तथा गोंडवाना में विघटित हो गया था। जिस अवधि के दौरान महाद्वीप दूर हो रहे होते हैं, तब ज्वालामुखीय गतिविधि के कारण अधिक महासागरीय आवरण का निर्माण होता है। चूंकि युवा ज्वालामुखीय परत पुरानी महासागरीय परत की तुलना में अपेक्षाकृत अधिक गर्म तथा कम सघन होती है, अतः ऐसी अवधियों में महासागर का स्तर बढ़ जाएगा. इसके कारण समुद्री सतह में वृद्धि होती है। अतः पैलियोज़ोइक के पूर्वार्ध में, महासागरों के बड़े क्षेत्र समुद्री सतह के नीचे थे।

प्रारंभिक पैलियोज़ोइक मौसम वर्तमान की तुलना में अधिक गर्म थे, लेकिन ऑर्डोविशियन के अंत में एक संक्षिप्त हिम-युग आया, जिसके दौरान हिमनदों ने दक्षिणी ध्रुव को ढंक लिया, जहां गोंडवाना का विशाल महाद्वीप स्थित था। इस अवधि के हिमनदीकरण के चिह्न केवल प्राचीन गोंडवाना में ही मिलते हैं। लेट ऑर्डिविशियन हिम-युग के दौरान, अनेक सामूहिक विलोपन हुए, जिनमें अनेक ब्रैकियोपॉड्स, ट्रायलोबाइट्स, ब्रियोज़ोआ तथा मूंगे समाप्त हो गए। ये समुद्री प्रजातियां शायद समुद्री जल के घटते तापमान को नहीं सह सकीं। इस विलोपन के बाद नई प्रजातियों का जन्म हुआ, जो कि अधिक विविध तथा बेहतर ढंग से अनुकूलित थीं। उन्हें विलुप्त हो चुकी प्रजातियों द्वारा खाली किये गये स्थानों को भरना था।

450 तथा 400 Ma के बीच, कैलिडोनियन ऑरोजेनी के दौरान, लौरेन्शिया तथा बैल्टिका महाद्वीपों की टक्कर हुई और जिससे लॉरुशिया का निर्माण हुआ। इस टकराव जो पर्वत-श्रेणी उत्पन्न हुई, उसके चिह्न स्कैन्डिनेविया, स्कॉटलैंड तथा पूर्वी ऐपलाकियन्स में ढूंढे जा सकते हैं। डेविनियन काल (416-359 Ma) में, गोंडवाना तथा साइबेरिया लॉरुशिया की ओर सरकने लगे। लॉरुशिया के साथ साइबेरिया के टक्कर के परिणामस्वरूप यूरेलियन ऑरोजेनी का निर्माण हुआ, लॉरुशिया के साथ गोंडवाना की टक्कर को यूरोप में वैरिस्कैन या हर्सिनियन ऑरोजेनी तथा उत्तरी अमेरिका में ऐलेघेनियन ऑरोजेनी कहा जाता है। यह बाद वाला चरण कार्बोनिफेरस काल (359-299 Ma) के दौरान पूर्ण हुआ और इसके परिणामस्वरूप अंतिम सुपरकॉन्टिनेन्ट पैन्जाइया की रचना हुई।

भूमि का औपनिवेशीकरण

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
पृथ्वी के इतिहास के अधिकांश में, भूमि पर कोई बहुकोशिकीय जीव नहीं हैं। सतह के हिस्सों थोड़ा मंगल ग्रह की इस दृष्टि से देखते हैं [111] के समान हो सकता है।

प्रकाश संश्लेषण से ऑक्सीजन एकत्रित हुई, जिसके परिणामस्वरूप एक ओज़ोन परत का निर्माण हुआ, जिसने सूर्य के अधिकांश पराबैंगनी विकिरण को अवशोषित कर लिया, जिसका अर्थ यह था कि जो एककोशीय जीव भूमि तक पहुंच चुके थे, उनके मरने की संभावना कम हो गई थी और प्रोकेरियोट जीवों ने गुणात्मक रूप से बढ़ना प्रारंभ कर दिया तथा वे जल के बाहर अस्तित्व के लिये बेहतर ढंग से अनुकूलित हो गए। संभवतः प्रोकेरियोट जीवों ने यूकेरियोट जीवों की उत्पत्ति से भी पहले 2.6 Ga में ही धरती पर अपने उपनिवेश बना लिये थे। लंबे समय तक, भूमि बहुकोशीय जीवों से वंचित रही। सुपरकॉन्टिनेन्ट पैनोशिया 600 Ma के लगभग निर्मित हुआ और उसके 50 मिलियन वर्षों बाद ही यह विघटित हो गया। मछली, शुरुआती कशेरुकी, 530 Ma के लगभग महासागर में अवतरित हुई। :354 एक प्रमुख विलोपन-घटना कैम्ब्रियन काल, जो 488 Ma में समाप्त हुआ, के अंत से पहले हुई थी।

कई सौ मिलियन वर्ष पूर्व, वनस्पति (जो संभवतः शैवाल जैसे थे) एवं कवक जल के किनारों पर और फिर उससे बाहर उगने शुरु हुए.:138-140 भूमि-कवक के प्राचीनतम जीवाष्म 480–460 Ma के हैं, हालांकि आण्विक प्रमाण यह संकेत देते हैं कि भूमि पर कवकों के उपनिवेश लगभग 1000 Ma में तथा वनस्पतियों के उपनिवेश 700 Ma में बनना शुरु हुए होंगे। प्रारंभ में वे जल के किनारों के पास बने रहे, लेकिन उत्परिवर्तन और विविधता के परिणामस्वरूप नये वातावरण में भी कालोनियों का निर्माण हुआ। पहले पशु द्वारा महासागर से निकलने का सही समय ज्ञात नहीं है: धरती पर प्राचीनतम स्पष्ट प्रमाण लगभग 450 Ma में संधिपाद प्राणियों के हैं, जो शायद भूमि पर स्थित वनस्पतियों के द्वारा प्रदत्त विशाल खाद्य-स्रोतों के कारण बेहतर ढंग से अनुकूलित बन गये और विकसित हुए. इस बात के कुछ अपुष्ट प्रमाण भी हैं कि संधिपाद प्राणी पृथ्वी पर 530 Ma में अवतरित हुए.

ऑर्डोविशियन काल के अंत, 440 Ma, में शायद उसी समय आये हिम-युग के कारण और भी विलोपन-घटनाएं हुईं. 380 से 375 Ma के लगभग, पहले चतुष्पाद प्राणी का विकास मछली से हुआ। ऐसा माना जाता है कि शायद मछली के पंख पैरों के रूप में विकसित हुए, जिससे पहले चतुष्पाद प्राणियों को सांस लेने के लिये अपने सिर पानी से बाहर निकालने का मौका मिला। इससे उन्हें कम ऑक्सीजन वाले जल में रहने या कम गहरे जल में छोटे शिकार करने की अनुमति मिलती. बाद में शायद उन्होंने संक्षिप्त अवधियों के लिये जमीन पर जाने का साहस किया होगा। अंततः, उनमें से कुछ भूमि पर जीवन के प्रति इतनी अच्छी तरह अनुकूलित हो गए कि उन्होंने अपना वयस्क जीवन भूमि पर बिताया, हालांकि वे अपने जल में ही अपने अण्डों से बाहर निकला करते थे और अण्डे देने के लिये पुनः वहीं जाया करते थे। यह उभयचरों की उत्पत्ति थी। लगभग 365 Ma में, शायद वैश्विक शीतलन के कारण, एक और विलोपन-काल आया। वनस्पतियों से बीज निकले, जिन्होंने इस समय तक (लगभग 360 Ma तक) भूमि पर अपने विस्तार की गति नाटकीय रूप से बढ़ा दी।

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
पैन्गेई, सबसे हाल ही में महाद्वीप, 300 से 180 एमए से अस्तित्व में है। आधुनिक महाद्वीपों और अन्य लैन्ड्मासेस के रूपरेखा इस नक्शे पर सूचकांक हैं।

लगभग 20 मिलियन वर्षों बाद (340 Ma:293-296 ), उल्वीय अण्डों की उत्पत्ति हुई, जो कि भूमि पर भी दिये जा सकते थे, जिससे चतुष्पाद भ्रूणों को अस्तित्व का लाभ प्राप्त हुआ। इसका परिणाम उभयचरों से उल्वों के विचलन के रूप में मिला। अगले 30 मिलियन वर्षों में (310 Ma:254-256 ) सॉरोप्सिडों (पक्षियों व सरीसृपों सहित) से साइनैप्सिडों (स्तनधारियों सहित) का विचलन देखा गया। जीवों के अन्य समूहों का विकास जारी रहा और श्रेणियां-मछलियों, कीटों, जीवाणुओं आदि में-विस्तारित होती रहीं, लेकिन इनके बहुत कम विवरण ज्ञात हैं। सबसे हाल में पैन्जाइया नामक जिस सुपरकॉन्टिनेन्ट की परिकल्पना दी गई है, उसका निर्माण 300 Ma में हुआ।

मेसोज़ोइक

विलोपन की आज तक की सबसे भयंकर घटना 250 Ma में, पर्मियन और ट्राएसिक काल की सीमा पर हुई; पृथ्वी पर मौजूद जीवन का 95% समाप्त हो गया और मेसोज़ोइक युग (अर्थात मध्य-कालीन जीवन) की शुरुआत हुई, जिसका विस्तार 187 मिलियन वर्षों तक था। विलोपन की यह घटना संभवतः साइबेरियाई पठार (Siberian trap) की ज्वालामुखीय घटनाओं, किसी उल्का-पिण्ड के प्रभाव, मीथेन हाइड्रेट के गैसीकरण, समुद्र के जलस्तर में परिवर्तनों, ऑक्सीजन में कमी की किसी बड़ी घटना, अन्य घटनाओं या इन घटनाओं के किसी संयोजन के कारण हुई। अंटार्कटिका स्थित विल्केस लैंड क्रेटर या ऑस्ट्रेलिया के उत्तर-पश्चिमी किनारे पर स्थित बेडाउट संरचना पर्मियन-ट्रायेसिक विलोपन के किसी प्रभाव के साथ संबंध का संकेत दे स्काती है। लेकिन यह अभी भी अनिश्चित बना हुआ है कि क्या इनमें से किसी या अन्य प्रस्तावित पर्मियन-ट्रायेसिक सीमा के क्रेटर क्या सचमुच प्रभाव वाले क्रेटर या यहां तक पर्मियन-ट्रायेसिक घटना के समकालीन क्रेटर हैं भी या नहीं। जीवन बच गया और लगभग 230 Ma में, डायनोसोर अपने सरीसृप पूर्वजों से अलग हो गए। ट्रायेसिक और जुरासिक कालों के बीच 200 Ma में हुई विलोपन की एक घटना में अनेक डायनोसोर बच गए, और जल्द ही वे कशेरुकी जीवों में प्रभावी बन गए। हालांकि स्तनधारियों की कुछ श्रेणियां इस अवधि में पृथक होना शुरु हो चुकीं थीं, लेकिन पहले से मौजूद सभी स्तनधारी संभवतः छछूंदरों जैसे छोटे प्राणी थे।:169

180 Ma तक, पैन्जाइया के विघटन से लॉरेशिया और गोंडवाना का निर्माण हुआ। उड़ने वाले और न उड़ने वाले डाइनोसोरों के बीच सीमा स्पष्ट नहीं है, लेकिन आर्किप्टेरिक्स, जिसे पारंपरिक रूप से शुरुआती पक्षियों में से एक माना जाता था, लगभग 150 Ma में पाया जाता था। आवृत्तबीजी से पुष्प के विकास का प्राचीनतम उदाहरण क्रेटेशियस काल, लगभग 20 मिलियन वर्षों बाद (132 Ma) का है। पक्षियों के साथ प्रतिस्पर्धा के कारण अनेक टेरोसॉर्स विलुप्त हो गये और डाइनोसोर शायद पहले से ही घटते जा रहे थे, जब 65 Ma में, संभवतः एक 10-किलोमीटर (33,000 फीट) उल्का-पिण्ड वर्तमान चिक्ज़ुलुब क्रेटर के पास युकेटन प्रायद्वीप में पृथ्वी पर गिरा. इससे विविक्त पदार्थ व वाष्प की बड़ी मात्राएं हवा में बाहर निकलीं, जिससे सूर्य का प्रकाश अवरुद्ध हो गया और प्रकाश-संश्लेषण की क्रिया रूक गई। अधिकांश बड़े पशु, जिनमें न उड़नेवाले डाइनोसोर भी शामिल हैं, विलुप्त हो गए, और क्रिटेशियस काल तथा मेसोज़ोइक युग का अंत हो गया। इसके बाद, पैलियोशीन काल में, स्तनधारी जीवों में तेजी से विविधता उत्पन्न हुई, उनके आकार में वृद्धि हुई और वे प्रभावी कशेरुकी जीव बन गए। प्रारंभिक जीवों का अंतिम आम पूर्वज शायद इसके 2 मिलियन वर्षों (लगभग 63 Ma में) बाद समाप्त हो गया।:160 इयोसिन युग के अंतिम भाग तक, कुछ ज़मीनी स्तनधारी महासागरों में लौटकर बैसिलोसॉरस जैसे पशु बन गए, जिनसे अंततः डॉल्फिनों व बैलीन व्हेल का विकास हुआ।

सेनोज़ोइक युग (हालिया जीवन)

मानव का विकास

लगभग 6 Ma के आस-पास पाया जाने वाला छोटा अफ्रीकी वानर वह अंतिम पशु था, जिसके वंशजों में आधुनिक मानव व उनके निकटतम संबंधी, बोनोबो तथा चिम्पान्ज़ी दोनों शामिल रहने वाले थे।:100-101 इसके वंश-वृक्ष की केवल दो शाखाओं के ही वंशज बचे रहे। इस विभाजन के शीघ्र बाद, कुछ ऐसे कारणों से जो अभी भी विवादास्पद हैं, एक शाखा के वानरों ने सीधे खड़े होकर चल सकने की क्षमता विकसित कर ली। :95-99 उनके मस्तिष्क के आकार में तीव्रता से वृद्धि हुई और 2 Ma तक, होमो वंश में वर्गीकृत किये जाने वाले पहले प्राणी का जन्म हुआ।:300 बेशक, विभिन्न प्रजातियों या यहां तक कि वर्गों के बीच की रेखा भी कुछ हद तक अनियन्त्रित है क्योंकि पीढ़ी-दर-पीढ़ी जीव लगातार बदलते जाते हैं। इसी समय के आस-पास, आम चिम्पांज़ी के पूर्वजों और बोनोबो के पूर्वजों के रूप में दूसरी शाखा निकली और जीवन के सभी रूपों में एक साथ विकास जारी रहा। :100-101

आग को नियंत्रित कर पाने की क्षमता शायद होमो इरेक्टस (या होमो अर्गेस्टर) में शुरु हुई, संभवतः कम से कम 790,000 वर्ष पूर्व, लेकिन शायद 1.5 Ma से भी पहले.:67 इसके अलावा, कभी-कभी यह सुझाव भी दिया जाता है कि नियंत्रित आग का प्रयोग व खोज होमो इरेक्टस से भी पहले की गई हो सकती है। आग का प्रयोग संभवतः प्रारंभिक लोअर पैलियोलिथिक (ओल्डोवन) होमिनिड होमो हैबिलिस या पैरेंथ्रोपस जैसे शक्तिशाली ऑस्ट्रैलोपाइथेशियन द्वारा किया जाता था।

भाषा की उत्पत्ति को स्थापित कर पाना अधिक कठिन है; यह अस्पष्ट है कि क्या होमो इरेक्टस बोल सकते थे या क्या वह क्षमता होमो सेपियन्स की उत्पत्ति तक शुरु नहीं हुई थी।:67 जैसे-जैसे मस्तिष्क का आकार बढ़ा, शिशुओं का जन्म पहले होने लगा, उनके सिरों के आकार इतने बढ़ गए कि उनका कोख से निकल पाना कठिन हो गया। इसके परिणामस्वरूप, उन्होंने अधिक सुनम्यता प्रदर्शित की और इस प्रकार उनकी सीखने की क्षमता में वृद्धि हुई और उन्हें निर्भरता की एक लंबी अवधि की आवश्यकता पड़ने लगी। सामाजिक कौशल अधिक जटिल बन गए, भाषा अधिक परिष्कृत हुई और उपकरण अधिक विस्तारित हुए. इसने आगे और अधिक सहयोग तथा बौद्धिक विकास में योगदान दिया। :7 ऐसा माना जाता है कि आधुनिक मानव (होमो सेपियन्स) की उत्पत्ति लगभग 200,000 वर्ष पूर्व या उससे भी पहले अफ्रीका में हुई, प्राचीनतम जीवाष्म लगभग 160,000 वर्षों पुराने हैं।

आध्यात्मिकता के संकेत देने वाले पहले मानव नियेंडरथल (जिन्हें सामान्यतः एक ऐसी पृथक प्रजाति के रूप में वर्गीकृत किया जाता है, जिसके कोई वंशज शेष नहीं बचे) हैं; वे अपने मृतकों को दफनाया करते थे, अक्सर शायद भोजन या उपकरणों के साथ.:17 हालांकि अधिक परिष्कृत विश्वासों के प्रमाण, जैसे प्रारंभिक क्रो-मैग्नन गुफा-चित्रों (संभवतः जादुई या धार्मिक महत्व वाले):17-19 की उत्पत्ति लगभग 32,000 वर्षों तक नहीं हुई थी। क्रो-मैग्ननों ने अपने पीछे पत्थर की कुछ आकृतियां, जैसे विलेन्डॉर्फ का वीनस, भी छोड़ी हैं और संभवतः वे भी धार्मिक विश्वासों को ही सूचित करती हैं।:17-19 11,000 वर्ष पूर्व की अवधि तक आते-आते, होमो सेपियन्स दक्षिणी अमेरिका के दक्षिणी छोर तक पहुंच गये, जो कि अंतिम निर्जन महाद्वीप था (अंटार्कटिका के अलावा, जिसके बारे में 1820 ईसवी में इसकी खोज किये जाने से पहले तक कोई जानकारी नहीं थी). उपकरणों का प्रयोग और संवाद में सुधार जारी रहा और पारस्परिक संबंध अधिक जटिल होते गए।

सभ्यता

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
लियोनार्डो दा विंसी द्वारा निर्मित विट्रुवियन मैन पुनर्जागरण के दौरान कला और विज्ञान के क्षेत्र में देखी गई प्रगति के प्रतीक हैं।

इतिहास के 90% से अधिक काल तक, होमो सेपियन घूमंतू शिकारी-संग्राहकों के रूप में छोटी टोलियों में रहा करते थे। :8 जैसे-जैसे भाषा अधिक जटिल होती गई, याद रख पाने और संवाद की क्षमता के परिणामस्वरूप एक नया प्रतिध्वनिकारक बना: मेमे (meme). विचारों का आदान-प्रदान तीव्रता से किया जा सकता था और उन्हें अगली पीढ़ियों तक भेजा जा सकता था।

सांस्कृतिक उत्पत्ति ने तेज़ी से जैविक उत्पत्ति का स्थान ले लिया और वास्तविक इतिहास की शुरुआत हुई। लगभग 8500 और 7000 ईपू के बीच, मध्य पूर्व के उपजाऊ अर्धचन्द्राकार क्षेत्र में रहने वाले मानवों ने वनस्पतियों व पशुओं के व्यवस्थित पालन की शुरुआत की: कृषि. यह पड़ोसी क्षेत्रों तक फैल गया और अन्य स्थानों पर स्वतंत्र रूप से विकसित हुआ, जब तक कि अधिकांश होमो सेपियन्स कृषकों के रूप में स्थाई बस्तियों में स्थानबद्ध नहीं हो गए।

सभी समाजों ने खानाबदोश जीवन का त्याग नहीं किया, विशेष रूप से उन्होंने, जो पृथ्वी के ऐसे क्षेत्रों में निवास करते थे, जहां घरेलू बनाई जा सकने वाली वनस्पतियों की प्रजातियां बहुत कम थीं, जैसे ऑस्ट्रलिया। हालांकि, कृषि को न अपनाने वाली सभ्यताओं में, कृषि द्वारा प्रदान की गई सापेक्ष स्थिरता व बढ़ी हुई उत्पादकता के जनसंख्या वृद्धि की अनुमति दी।

कृषि का एक महत्वपूर्ण प्रभाव पड़ा; मनुष्य वातावरण को अभूतपूर्व रूप से प्रभावित करने लगे। अतिरिक्त खाद्यान्न ने एक पुरोहिती या संचालक वर्ग को जन्म दिया, जिसके बाद श्रम-विभाजन में वृद्धि हुई। इसके परिणामस्वरूप मध्य पूर्व के सुमेर में 4000 और 3000 ईपू पृथ्वी की पहली सभ्यता विकसित हुई। :15 शीघ्र ही प्राचीन मिस्र, सिंधु नदी की घाटी तथा चीन में अन्य सभ्यताएं विकसित हुईं.

3000 ईपू, हिंदुत्व, विश्व के प्राचीनतम धर्मों में से एक, जिसका पालन आज भी किया जाता है, की रचना शुरु हुई। इसके बाद शीघ्र ही अन्य धर्म भी विकसित हुए. लेखन के आविष्कार ने जटिल समाजों के विकास को सक्षम बनाया: जानकारियों को दर्ज करने के कार्य और पुस्तकालयों ने ज्ञान के भण्डार के रूप में कार्य किया और जानकारी के सांस्कृतिक संचारण को बढ़ाया. अब मनुष्यों को अपना सारा समय केवल अपने अस्तित्व को बचाये रखने के लिये कार्य करने में खर्च नहीं करना पड़ता था-जिज्ञासा और शिक्षा ने ज्ञान तथा बुद्धि की खोज की प्रेरणा दी।

विज्ञान (इसके प्राचीन रूप में) सहित विभिन्न विषय विकसित हुए. नई सभ्यताओं का विकास हुआ, जो एक दूसरे के साथ व्यापार किया करतीं थीं और अपने इलाके व संसाधनों के लिये युद्ध किया करतीं थीं। जल्द ही साम्राज्यों का विकास भी शुरु हो गया। 500 ईपू के आस-पास, मध्य पूर्व, इरान, भारत, चीन और ग्रीस में लगभग एक जैसे साम्राज्य थे; कभी एक साम्राज्य का विस्तार होता था, लेकिन बाद में पुनः उसमें कमी आ जाती थी या उसे पीछे धकेल दिया जाता था।:3

चौदहवीं सदी में, धर्म, कला व विज्ञान में हुई उन्नति के साथ ही इटली में पुनर्जागरण की शुरुआत हुई। :317-319 सन 1500 में यूरोपीय सभ्यता में परिवर्तन की शुरुआत हुई, जिसने वैज्ञानिक तथा औद्योगिक क्रांतियों को जन्म दिया। उस महाद्वीप ने पूरे ग्रह पर फैले मानवीय समाजों पर राजनैतिक और सांस्कृतिक प्रभुत्व जमाने के प्रयास शुरु कर दिये। :295-299 सन 1914 से 1918 तथा 1939 से 1945t तक, पूरे विश्व के देश विश्व-युद्धों में उलझे रहे।

प्रथम विश्व युद्ध के बाद स्थापित लीग ऑफ नेशन्स विवादों को शांतिपूर्वक सुलझाने के लिये अंतर्राष्ट्रीय संस्थाओं की स्थापना की ओर पहला कदम था। जब यह द्वितीय विश्व युद्ध को रोक पाने में विफल रही, तो इसका स्थान संयुक्त राष्ट्र संघ ने ले लिया। 1992 में, अनेक यूरोपीय राष्ट्रों ने मिलकर यूरोपीय संघ की स्थापना की। परिवहन व संचार में सुधार होने के कारण, पूरे विश्व में राष्ट्रों के राजनैतिक मामले और अर्थ-व्यवस्थाएं एक-दूसरे के साथ अधिक गुंथी हुई बनतीं गईं। इस वैश्वीकरण ने अक्सर टकराव व सहयोग दोनों ही उत्पन्न किये हैं।

हालिया घटनाएं

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis) 
ग्रह के गठन के साढ़े चार अरब वर्ष बाद, पृथ्वी का जीवन बायोस्फियर से मुक्त हो गया। इतिहास में पहली बार धरती को अंतरिक्ष से देखा गया।

1940 के दशक के मध्य भाग से लेकर अभी तक परिवर्तन ने एक तीव्र रफ़्तार जारी रखी है। प्रौद्योगिक विकासों में परमाणु हथियार, कम्प्यूटर, आनुवांशिक इंजीनियरिंग तथा नैनोटेक्नोलॉजी शामिल हैं। संचार और परिवहन प्रौद्योगिकी से प्रेरित आर्थिक वैश्वीकरण ने विश्व के अनेक भागों में दैनिक जीवन को प्रभावित किया है। सांस्कृतिक और संस्थागत रूप, जैसे लोकतंत्र, पूंजीवाद और पर्यावरणवाद का प्रभाव बढ़ा है। विश्व की जनसंख्या में वृद्धि के साथ ही मुख्य चिंताओं व समस्याओं, जैसे बीमारियां, युद्ध, गरीबी, हिंसक अतिवाद और हाल ही में, मानव के कारण हो रहे मौसम-परिवर्तन आदि में वृद्धि हुई है।

सन 1957 में, सोवियत संघ ने अपने पहले मानवनिर्मित उपग्रह को कक्षा में प्रक्षेपित किया और इसके शीघ्र बाद, यूरी गगारिन अंतरिक्ष में जाने वाले पहले व्यक्ति बने। नील आर्मस्ट्रॉन्ग, एक अमेरिकी नागरिक एक अन्य आकाशीय वस्तु, चंद्रमा, पर कदम रखने वाले पहले मानव बने। सौर मण्डल के सभी ज्ञात ग्रहों पर मानव रहित अभियान भेजे जा चुके हैं, जिनमें से कुछ (जैसे वोयाजर) सौर मण्डल से भी बाहर निकल गए हैं। बीसवीं सदी में सोवियत संघ और संयुक्त राज्य अमेरिका अंतरिक्ष अनुसंधान के शुरुआती अगुआ थे। पंद्रह से भी अधिक देशों का प्रतिनिधित्व करने वाली पांच अंतरिक्ष एजेंसियों ने अंतर्राष्ट्रीय स्पेस स्टेशन का निर्माण करने के लिये मिलकर कार्य किया है। इसके माध्यम से सन 2000 से अंतरिक्ष में मानव की सतत उपस्थिति रही है।

इन्हें भी देखें

पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)  Astronomy portal
पृथ्वी का इतिहास: सौर मंडल की उत्पत्ति, पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्ति, विशाल संघात अवधारणा (The giant impact hypothesis)  Earth_sciences portal

सन्दर्भ


Tags:

पृथ्वी का इतिहास सौर मंडल की उत्पत्तिपृथ्वी का इतिहास पृथ्वी के केंद्र तथा पहले वातावरण की उत्पत्तिपृथ्वी का इतिहास विशाल संघात अवधारणा (The giant impact hypothesis)पृथ्वी का इतिहास महासागरों और वातावरण की उत्पत्तिपृथ्वी का इतिहास प्रारंभिक महाद्वीपपृथ्वी का इतिहास जीवन की उत्पत्तिपृथ्वी का इतिहास प्रोटेरोज़ोइक युगपृथ्वी का इतिहास पैलियोज़ोइक युगपृथ्वी का इतिहास मेसोज़ोइकपृथ्वी का इतिहास सेनोज़ोइक युग (हालिया जीवन)पृथ्वी का इतिहास इन्हें भी देखेंपृथ्वी का इतिहास सन्दर्भपृथ्वी का इतिहास

🔥 Trending searches on Wiki हिन्दी:

मेहंदीसमाजशास्त्रराजा राममोहन रायमीरा बाईआलोचनामदाररामेश्वरम तीर्थहनु माननरेन्द्र मोदी स्टेडियमइन्दिरा गांधीगायत्री मन्त्रआदमसाकेतपर्यायवाचीराष्ट्रभाषाबाघपंजाब (भारत)भारतीय स्वतन्त्रता आन्दोलनकामसूत्रबाल गंगाधर तिलकधर्मो रक्षति रक्षितःहरिमन्दिर साहिबनई दिल्लीरजनीकान्तकुंभ राशिहर्षद मेहताआतंकवादविज्ञापनअलाउद्दीन खिलजीजैन धर्मगेहूँक्रिकेटपवन सिंहफाॅरइवर लिवींग प्रोडक्ट इंटरनेशनलबिहार के लोकसभा निर्वाचन क्षेत्रशक्ति पीठआयुष्मान भारत योजनाशाकम्भरीराजीव दीक्षितअतीक अहमदमुख्य चुनाव आयुक्त (भारत)लालबहादुर शास्त्रीभारतीय रुपयारॉयल चैलेंजर्स बैंगलौरब्राह्मणकाराकाट लोक सभा निर्वाचन क्षेत्रसंस्कृत भाषाध्रुव राठीआम्रपाली दुबेआल्हाचेन्नई सुपर किंग्सनक्सलवादप्रकाश-संश्लेषणबवासीरभारतीय दण्ड संहिताश्रीमद्भगवद्गीताकंप्यूटरबैंकनैना देवी मंदिर, हिमाचल प्रदेशगुरु नानकभारत निर्वाचन आयोगब्रह्माव्यक्तित्वकबीरसंदीप वारियरकालभैरवाष्टकमुहूर्तपरशुरामदहेज प्रथाशिव ताण्डव स्तोत्रसुनील नारायणसिकंदरमन्दिरराम की शक्तिपूजाकरणी माता मन्दिर, बीकानेरराष्ट्रीय स्वयंसेवक संघमहाजनपद🡆 More