આર્યભટ્ટ

આર્યભટ્ટ (સંસ્કૃત: आर्यभट) પ્રાચીન યુગના ભારતીય ગણિતશાસ્ત્રીઓ અને ખગોળશાસ્ત્રીઓમાં પ્રથમ હરોળના ગણિતશાસ્ત્રી અને ખગોળશાસ્ત્રી છે.

આર્યભટીય (આશરે ઈ.સ. ૪૯૯- ૨૩ વર્ષની ઉંમરે) અને આર્ય-સિદ્ધાંત એ તેમની સૌથી વધારે જાણીતી કૃતિઓ છે.

આર્યભટ્ટ
IUCAA, પૂણેના મેદાન પર આર્યભટ્ટનું પૂતળુ. દેખાવ અંગે કોઈ માહિતી નહિ હોવાના કારણે આર્યભટ્ટની કોઈ પણ છબી કલાકારની પોતાની કલ્પનામાંથી ઉદભવેલ છે.

જીવનચરિત્ર

આર્યભટીયમાં સ્પષ્ટપણે આર્યભટ્ટના જન્મના વર્ષનો ઉલ્લેખ કરવામાં આવ્યો હોવા છતાં તેમના જન્મસ્થળનો મુદ્દો વિદ્વાનોમાં મત-મતાંતરનો વિષય રહ્યો છે. કેટલાક માને છે કે તેઓ અશ્માકા તરીકે ઓળખાતા નર્મદા અને ગોદાવરી વચ્ચેના પ્રદેશમાં જન્મ્યા હતા અને અશ્માકાને તેઓ મહારાષ્ટ્ર અને મધ્ય પ્રદેશ સહિતના મધ્યભારતના વિસ્તાર તરીકે ઓળખાવે છે, જો કે બુદ્ધવાદના પ્રારંભિક વર્ણનો અશ્માકા વધારે દક્ષિણમાં હોવાનું જણાવે છે અને આ વર્ણનો મુજબ અશ્માકા એ દક્ષિણાપીઠ અથવા દખ્ખણના વિસ્તાર છે, જ્યારે કે અન્ય કેટલાક લિખિત વર્ણનો અનુસાર અશ્માકાએ એલેક્ઝાન્ડર સાથે લડાઈ કરી હતી, આ વર્ણનો તેને વધારે ઉત્તરમાં મૂકે છે.

તાજેતરના અભ્યાસ મુજબ આર્યભટ્ટ ચામ્રવટ્ટમ (10N51, 75E45) કેરળના હતા.અભ્યાસનો દાવો છે કે અશ્માકા એ સ્રવણબેલગોલાથી ઘેરાયેલુ જૈન રાષ્ટ્ર હતું અને પત્થરના સ્તંભોથી ઘેરાયેલા દેશને અશ્માકા નામ આપ્યુ હતું.ચામ્રવટ્ટમ એ જૈન રાજ્યનો ભાગ હતો તેવું બ્રહ્મપુત્રા નદીના પરથી પ્રતિપાદિત થાય છે, કારણ કે જૈન પુરાણોમાં આવતા રાજા ભારતના નામ પરથી તેનું નામ પડ્યુ હતું. યુગની વાત કરતી વખતે આર્યભટ્ટ પણ ભારતનો સંદર્ભ આપે છે - રાજા ભારતના સમયની વાત દાસગિતિકાની પાંચમી પંક્તિમાં આવે છે.તે દિવસોમાં કુસુમપુરામાં પ્રખ્યાત વિશ્વવિદ્યાલય હતું અને ત્યાં આવીને જૈનો આર્યભટ્ટના પ્રભાવને જાણી શકતા અને આમ આર્યભટ્ટની કૃતિઓ કુસુમપુરા સુધી પહોંચી હતી અને ત્યાં તેમને પ્રતિષ્ઠા અપાવી હતી.

રચનાઓ

આર્યભટ્ટ ગણિત અને ખગોળવિજ્ઞાનના અનેક સમીકરણોના સર્જક છે, આમાંથી કેટલાક અપ્રાપ્ય છે. તેમની મુખ્ય રચનાઓમાંથી ગણિત અને ખગોળવિજ્ઞાનના સંગ્રહ આર્યભટીયમ્ ના પુષ્કળ સંદર્ભો ભારતીય ગાણિતિક સાહિત્યમાં આપવામાં આવે છે અને તે આધુનિક સમયમાં પણ ટકી રહ્યું છે. આર્યભટીયના ગાણિતિક વિભાગમાં અંકગણિત, બીજગણિત અને ત્રિકોણમિતિને આવરી લેવામાં આવ્યા છે. તેમાં અપૂર્ણાંક, વર્ગની ગણતરીઓ, અનંત સંખ્યાઓની ગણતરી અને સાઈનના કોષ્ટકનો સમાવેશ પણ કરવામાં આવ્યો છે. ખગોળશાસ્ત્ર માં પણ તેમનું મહત્વનું યોગદાન છે.

ગણિતશાસ્ત્ર

સ્થાન મૂલક પદ્ધતિ અને શૂન્ય

આંકડાની સ્થાન-મૂલક પદ્ધતિ સૌ પ્રથમ ત્રીજી સદીમાં બખશાલિ હસ્તપ્રતમાં જોવા મળી હતી અને તેમની રચનાઓમાં સ્પષ્ટપણે આ પદ્ધતિ અમલમાં હોવાનું જોવા મળે છે. ; તેઓએ નિશ્ચિતપણે પ્રતીકનો ઉપયોગ નથી કર્યો, પરંતુ ફ્રેન્ચ ગણિતશાસ્ત્રી જ્યોર્જસ ઈફ્રાની દલીલ છે કે આર્યભટ્ટની સ્થાન-મૂલક પદ્ધતિમાં શૂન્યના જ્ઞાનનો ઉલ્લેખ છે, કારણકે દસની ગણતરી માટે મૂલ્યવિહિન પ્લેસ હોલ્ડરનો ઉપયોગ કરાયો છે.

આમ છતાં, આર્યભટ્ટે બ્રાહ્મી આંકડાઓનો ઉપયોગ નથી કર્યો; વૈદિક કાળની સંસ્કૃત પરંપરાને જાળવી રાખતા તેમણે આંકડાઓ નોંધવા માટે અક્ષરોનો ઉપયોગ કર્યો છે, સ્મૃતિ સંવર્ધક કલામાં જથ્થાવાચક અભિવ્યક્તિ (સાઈન જેવા કોષ્ટક) સ્વરૂપ.

પાઈનું અતાર્કિક મૂલ્ય

પાઈ (આર્યભટ્ટ )ના સંભવિત મૂલ્ય માટે આર્યભટ્ટે કામ કર્યું હતું અને કદાચ તેઓ એવા તારણ પર આવ્યા હતા કે આર્યભટ્ટ  અતાર્કિક છે. આર્યભટ્ટીયમના બીજા ભાગમાં (gaṇitapāda 10), તેઓ લખે છે:

"chaturadhikam śatamaśṭaguṇam dvāśaśṭistathā sahasrāṇām

Ayutadvayaviśkambhasyāsanno vrîttapariṇahaḥ."

"ચારને 100માં ઉમેરો, આઠ દ્વારા ગુણાકાર કરો અને પછી 62,000 ઉમેરો.

આ રીતે 20,000નો વ્યાસ ધરાવતા વર્તુળનું પરિઘ જાણી શકાય છે."

તેઓ કહે છે કે પરિઘ અને વ્યાસનો ગુણોત્તર ((4+100)×8+62000)/20000 = 3.1416 છે, જે પાંચ અર્થવાહક આંકડાઓની સામે ચોક્કસ છે. આર્યભટ્ટે આસન્ન (નજીક જતું) શબ્દનો ઉપયોગ કર્યો હતો, છેલ્લા શબ્દની બરાબર પહેલા જ આવતુ અને જણાવ્યું હતું કે આ નજીકનું છે, પરંતુ તેનું મૂલ્ય અનંત (અથવા અતાર્કિક) છે. જો આ સાચુ હોય તો તેને અત્યંત અદ્યતન અંતઃદ્રષ્ટિ કહી શકાય, કારણ કે પાઈના મૂલ્યની અતાર્કિકતા અંગે યુરોપને તો છેક 1761માં જાણ થઈ હતી અને તેને સાબિત કરી હતી લામ્બર્ટે). આર્યભટીય (Aryabhatiya)નો અરેબિકમાં અનુવાદ થયા બાદ (ca. 820 CE) અલ-ખ્વારિઝ્મિના બીજગણિત પરના પુસ્તકમાં નજીકના મૂલ્યનો ઉલ્લેખ કરાયો હતો.

ક્ષેત્રમાપન અને ત્રિકોણમિતિ

ગણિતપદ 6માં આર્યભટ્ટે ત્રિકોણનો વિસ્તાર આપતા જણાવ્યું છે

    ત્રિભુજસ્ય ફલશરીરમ સમદલકોટિ ભુજારધઅશ્વમેઘ

જેનો અનુવાદ થાય છે: ત્રિકોણ માટે, લંબનું પરિણામ અને તેની અડધી બાજુ એટલે વિસ્તાર. આર્યભટ્ટે તેમની રચના અર્ધ-જ્યા દ્વારા સાઈન ની ચર્ચા કરી છે. તેનો સીધો અર્થ થાય છે "અર્ધ-ચાપકર્ણ". સરળતા ખાતર લોકોએ તેને જ્યા કહેવા માંડ્યું.અરબી લેખકોએ જ્યારે તેમની રચનાનું સંસ્કૃતમાંથી અરબીમાં ભાષાંતર કર્યું ત્યારે તેઓ આને જિબા (ઉચ્ચારોની સમાનતાથી પ્રેરાઈને) કહેતા. આમ છતાં, અરબી લખાણોમાં સ્વરને દૂર કરવામાં નથી આવ્યા અને તેનું ટૂંકાક્ષર jb થયું. બાદમાં લેખકોને જ્યારે ખબર પડી કે jbજિબા નું ટૂંકાક્ષર છે, તેમણે ફરી પાછો તેના બદલે જિબા નો ઉપયોગ શરૂ કર્યો, જેનો અર્થ થાય છે "ખાડી" અથવા "અખાત" (અરબીમાં જિબા એ તકનીકી શબ્દ હોવા ઉપરાંત તેનો મતલબ થાય છે અર્થ વગરનો શબ્દ). પાછળથી 12મી સદીમાં ઘેરાર્ડો ઓફ ક્રેમોનાએ આ લખાણોનું અરબીમાંથી લેટિનમાં ભાષાંતર કર્યું ત્યારે તેમણે અરબીના જિઆબ ના બદલે તેના લેટિન અર્થ સાઈનસ નો ઉપયોગ કર્યો (જેનો અર્થ પણ "ખાડી" અથવા "અખાત" થાય છે). ત્યાર બાદ અંગ્રેજીમાં સાઈનસ નું સાઈન થઈ ગયું.

અનિશ્ચિત સમીકરણો

ડાયોફેન્ટાઈન સમીકરણ તરીકે જાણીતા બનેલા અને ax + b = cy જેવા સમીકરણોનો ઉકેલ મેળવવાના હેતુથી પ્રાચીન સમયથી ભારતીય ગણિતશાસ્ત્રીઓને સમજવા માટે ભારે કુતુહલ દેખાયું છે.અહીંયા આર્યભટીય (Aryabhatiya)પરના ભાસ્કરના ભાષ્યનું ઉદાહરણ છે:

    એવી સંખ્યા શોધો કે જેને 8 વડે ભાગવાથી શેષમાં 5 મળે; 9 વડે ભાગાકારથી 4 શેષ મળે ; અને 7 વડે ભાગવામાં આવ્યા ત્યારે શેષ તરીકે 1 મળે.

દા.ત N = 8x+5 = 9y+4 = 7z+1. Nનું લઘુતમ મૂલ્ય 85 હોવાનું તારણ જાણવા મળે છે.સામાન્ય રીતે ડાયોફેન્ટાઈન સમીકરણો નામચીન મુશ્કેલી બની શકે છે. પ્રાચીન વૈદિક લખાણ સુલબા સૂત્રમાં આવા સમીકરણોની ગહન ચર્ચા થઈ હતી, જેના વધારે પ્રાચીન અંશો 800 સદી પૂર્વેના હોઈ શકે છે. આવી મુશ્કેલીઓ ઉકેલવાની આર્યભટ્ટની પદ્ધતિ kuṭṭaka (कुट्टक) પદ્ધતિ કહેવાય છે. કુટ્ટકઅર્થ થાય છે ભૂક્કો કરી નાખવો એટલે કે નાના કટકાઓમાં તોડવું. આ પદ્ધતિમાં પાસાના મૂળ ઘટકને નાના આંકડામાં લખવા માટે ગણતરીની પ્રવાહી પદ્ધતિનો સમાવેશ થાય છે. આજે આ ગણતરીઓ, ભાસ્કરે CE 621માં વર્ણન કર્યુ હતું તે મુજબ, ડાયોફેન્ટાઈન સમીકરણો ઉકેલવા માટેની આદર્શ પદ્ધતિ છે. અને તેને સામાન્ય રીતે આર્યભટ્ટ ગણતરી નિયમ કહેવામાં આવે છે.. ડાયોફેન્ટાઈન સમીકરણો એ સંકેત લેખ વિજ્ઞાનમાં રસપ્રદ વિષય છે અને RSA સંમેલન, 2006માં કુટ્ટક પદ્ધતિ અને સુલ્વાસૂત્રોની શરૂઆતની રચનાઓ મુખ્ય કેન્દ્ર બની હતી.

બીજગણિત

આર્યભટીય માં(Aryabhatiya) આર્યભટ્ટે વર્ગ અને ઘનની ગણતરીઓ માટે શ્રેણીબદ્ધ ઉત્કૃષ્ટ પરિણામ આપ્યા છે:

    આર્યભટ્ટ 

અને

    આર્યભટ્ટ 

ખગોળશાસ્ત્ર

ખગોળશાસ્ત્રની આર્યભટ્ટની પદ્ધતિ ઔડઆયક પદ્ધતિ તરીકે ઓળખાતી હતી (દિવસની ગણતરી ઉદયથી કરાય છે, પરોઢ લંકા ખાતે, વિષુવવૃત્ત). ખગોળશાસ્ત્ર અંગેના તેમના પાછળના કેટલાક લખાણો કે જેમાં સ્પષ્ટપણે સેકન્ડ માળખાનો પ્રસ્તાવ છે (અર્ધ-રાત્રિકા , મધ્યરાત્રિ), તે અપ્રાપ્ય છે, પરંતુ અંશતઃ બ્રહ્મગુપ્તના ખંડઅખઅદ્યાકા (khanDakhAdyaka)માં થયેલી ચર્ચામાંથી પુનઃનિર્માણ કરી શકાય છે. કેટલાક લખાણોમાં સ્વર્ગની ગતિને પૃથ્વીના પરિભ્રમણ માટે કારણભૂત ગણવામાં આવી હોય તેવું જણાય છે.

સૂર્ય પદ્ધતિની ગતિ

પૃથ્વી પોતાની ધરી પર ફરતી હોવાનું આર્યભટ્ટ માનતા હોય તેવું લાગે છે. લંકાનો ઉલ્લેખ કરતાં તેમના વિધાનમાં આ અંગે સૂચન છે કે જેમાં પૃથ્વીના પરિભ્રમણના કારણે સર્જાતિ ગતિ સંદર્ભે તારાઓ ગતિ કરતા હોવાનો ઉલ્લેખ છે:

    જે રીતે નૌકામાં બેઠેલ વ્યક્તિ જેમ-જેમ આગળ વધતી જાય છે તેમ-તેમ સ્થિર વસ્તુઓ દૂર જતી લાગે છે, તે રીતે લંકામાં લોકોને સ્થિર તારાઓ (દા.ત.વિષુવવૃત્ત પર) પશ્ચિમ દિશામાં ખસતા દેખાતા હતા. [અચલઆનિ ભની સમપશ્ચિમાગ્નિ - ગોલપદ.9]

પરંતુ ત્યાર બાદની પંક્તિમાં તારાઓ તથા ગ્રહોની ગતિને વાસ્તવિક ગતિ તરીકે વર્ણવવામાં આવી છે: “તેમના ઉગવા અને આથમવાનું કારણ અવકાશનું વર્તુળ અને પવન દ્વારા પશ્ચિમમાં લંકા તરફ ગતિ કરતાં ગ્રહો છે”. લંકા (lit. શ્રીલંકા) અહીંયા વિષુવવૃત્ત પરનો સંદર્ભ છે અને તેને અવકાશીય ગણતરીઓ માટે સૂર્ય-તારાની સ્થિતિની સમાનમાં ઉલ્લેખ છે. આર્યભટ્ટે સૌરમંડળનું ભૂકેન્દ્રીય સ્વરૂપ વર્ણવ્યું છે, કે જેમાં સૂર્ય અને તારા બંને ભ્રમણકક્ષા મુજબ ગતિ કરે છે અને આ ભ્રમણ પૃથ્વીની ફરતે થાય છે. આ નમૂનાનો મુદ્દો પૈતામહાસિદ્ધાંતા માં (ca. CE 425) પણ જોવા મળે છે- ગ્રહોની દરેક ગતિનું સંચાલન બે ભ્રમણકક્ષા દ્વારા નક્કી થાય છે, નાની મંદા (ધીમી) ભ્રમણકક્ષા અને મોટી શિઘ્ર (ઝડપી) ભ્રમણકક્ષા છે. પૃથ્વીથી અંતરની દ્રષ્ટિએ ગ્રહોનો ક્રમ આ મુજબ છે: ચંદ્ર, બુધ, શુક્ર, સૂર્ય, મંગળ, ગુરુ, શનિ, અને તારામંડળો.

ગ્રહોની સ્થિતિ અને સમયગાળાની ગણતરી કરવા માટે તેમની ભ્રમણકક્ષાનો સંદર્ભ લેવાયો હતો, બુધ અને શુક્રના કિસ્સામાં તેઓ પૃથ્વીની ફરતે એટલી જ ઝડપે ફરે છે જેટલી ઝડપ સૂર્યની હોય છે અને મંગળ, ગુરુ તથા શનિ એક નિશ્ચિત ગતિએ પૃથ્વીની આસપાસ ફરતા હોય છે અને દરેક ગ્રહની ગતિ રાશિચક્રને દર્શાવે છે.ખગોળશાસ્ત્રના મોટાભાગના ઇતિહાસકારો આ બંને ભ્રમણકક્ષાઓના સ્વરૂપના તત્વોને પૂર્વ-ટોલેમિક ગ્રીક ખગોળશાત્રનું પ્રતિનિધિત્વ કરતાં ગણાવે છે. આર્યભટ્ટના મોડેલમાં અન્ય ઘટક છે, સિઘરોક્કા , સૂર્યના સંબંધમાં મૂળ ગ્રહ સમય, જેને કેટલાક ઇતિહાસકારો પાયાનું સૂર્યકેન્દ્રીય મોડેલ કહે છે.

ગ્રહણો

તેઓ જણાવે છે કે ચંદ્ર અને ગ્રહો સૂર્યના પરાવર્તિત પ્રકાશથી ચમકે છે.તત્કાલિન સમયની માન્યતા મુજબ રાહુ અને કેતુ ગ્રહોને ગળી જતા હોવાની માન્યતા હતી, પરંતુ આ માન્યતાના બદલે તેઓ ઉદય અને અસ્તના કારણે પૃથ્વી પર પડતા પડછાયા સંદર્ભે ગ્રહણોને સમજાવે છે. આમ ચંદ્ર જ્યારે પૃથ્વીના પડછાયામાં પ્રવેશે ત્યારે ચંદ્રગ્રહણ થાય છે(પંક્તિ ગોલ.37), અને તેઓ પૃથ્વીના પડછાયાના કદ તથા વ્યાપ અંગે વિસ્તૃત ચર્ચા કરે છે (પંક્તિઓ ગોલ.38-48), અને ત્યારબાદ તેઓ ગ્રહણમાં આવતા ભાગ અને તેના કદ અંગે ગણતરી રજૂ કરે છે. ત્યાર બાદના ભારતીય ખગોળશાસ્ત્રીઓએ આ ગણતરીઓમાં ઉમેરો કર્યો છે, પરંતુ તેમાં આર્યભટ્ટની પદ્ધતિ પાયારૂપે રહી છે.ગણતરીઓનું કોષ્ટક એટલું બધુ સચોટ હતું કે 18મી સદીના વિજ્ઞાની ગિલ્લૌમ લે જેન્ટિલે, પોન્ડિચરીની મુલાકાત દરમિયાન નોંધ્યું હતું કે 1765-08-30ના રોજ ચંદ્રગ્રહણના સમયની ગણતરીઓ માત્ર 41 સેકન્ડ ટૂંકી પડી હતી જ્યારે કે તેમનું કોષ્ટક (ટોબિઆસ મેયર દ્વારા, 1752) 68 સેકન્ડ લાંબું હતું.

આર્યભટ્ટની ગણતરી મુજબ પૃથ્વીનો પરિઘ 39,968.0582 કિલોમીટર છે, જે 40,075.0167 કિલોમીટરના વાસ્તવિક મૂલ્ય કરતાં માત્ર 0.2% ઓછો છે. ગ્રીક ગણિતશાસ્ત્રી, ઈરેટોસ્થેનસની ગણતરીઓ કરતાં આ નજદીકી નોંધપાત્ર પ્રગતિ હતી (c. 200 BCE), આધુનિક એકમ મુજબ તેમની ચોક્કસ ગણતરી અપ્રાપ્ય છે પરંતુ તેમના અંદાજમાં અંદાજિત 5-10%ની ભૂલ હતી.

ભ્રમણનો સમયગાળો

સમયના આધુનિક એકમ સંદર્ભે આર્યભટ્ટની ગણતરીઓ જોઈએ તો ભ્રમણસમય (સ્થિર તારાઓ સંદર્ભે પૃથ્વીનું ચક્કર-ભ્રમણ) 23 કલાક 56 મિનિટ અને 4.1 સેકન્ડ છે; આધુનિક મૂલ્ય 23:56:4.091 છે. આ જ રીતે {0ભ્રમણ વર્ષ{/0}ના મૂલ્યની લંબાઈ 365 દિવસ 6 કલાક 12 મિનિટ 30 સેકન્ડ છે અને સમગ્ર વર્ષની લંબાઈ જોઈએ તો તેમાં 3 મિનિટ 20 સેકન્ડની ભૂલ છે. ભ્રમણના આધારે સમયની ગણતરીનો ખ્યાલ તે સમયની મોટાભાગની ખગોળશાસ્ત્રીય પદ્ધતિઓમાં જાણીતો હતો, પરંતુ તત્કાલીન સમયની ગણતરીઓમાં આ ગણતરી સૌથી વધારે સચોટ હતી.

સૂર્યકેન્દ્રીયવાદ

આર્યભટ્ટે દાવો કર્યો હતો કે પૃથ્વી પોતાની ધરી પર ફરે છે અને ગ્રહોની ભ્રમણકક્ષાના મોડેલના કેટલાક ઘટકો એ જ ઝડપે ફરતા હતા જે ઝડપે ગ્રહ સૂર્યની આસપાસ ફરતો હતો. આમ એવું કહી શકાય કે આર્યભટ્ટની ગણતરીઓ સૂર્યકેન્દ્રીય મોડેલના પાયા પર આધારિત હતી, કે જેમાં ગ્રહ સૂર્યની આસપાસ ફરે છે. આ સૂર્યકેન્દ્રીય અર્થઘટનની વિસ્તૃતત ચર્ચા એક સમીક્ષામાં છે, કે જે બી. એલ. વાન ડેર વીર્ડેનના પુસ્તકમાં "દર્શાવ્યા મુજબ, ગ્રહો અંગેના ભારતીય સિદ્ધાંત અંગે સંપૂર્ણ ગેરસમજ, [કે જે] આર્યભટ્ટના વર્ણનના તમામ શબ્દો કરતાં તદ્દન વિપરિત છે.," આમ છતાં કેટલાક માને છે કે પોતાનું મોડેલ સૂર્યકેન્દ્રીય સિદ્ધાંતનો પાયો છે તેવી વાતથી આર્યભટ્ટ પોતે અજાણ હતા. કેટલાક દાવા એવા પણ થયા છે કે તેમણે ગ્રહનો માર્ગ લંબગોળ ગણ્યો હતો, જો કે આ અંગેના પ્રથમદર્શી પુરાવા જોવા મળતા નથી. આમ છતાં સામોસના એરિસ્ટાર્ચુસ (3જી સદી ઈસ.પૂર્વે) અને ક્યારેક પોન્યુસના હેરાક્લિડ્સ (4થી સદી ઈસ.પૂર્વે)ને સામાન્ય રીતે સૂર્યકેન્દ્રીય સિદ્ધાંતનું શ્રેય આપવામાં આવે છે, ગ્રીક ખગોળશાસ્ત્રની આવૃત્તિ પ્રાચીન ભારતમાં જાણીતી હતી, પૌલિસા સિદ્ધાંત (સંભવતઃ એલેક્ઝાન્ડ્રિયાના પૌલ દ્વારા) અને સૂર્યકેન્દ્રિત સિદ્ધાંત વચ્ચે કોઈ સામ્યતા નથી.

વારસો

ભારતીય ખગોળશાસ્ત્રની પરંપરામાં આર્યભટ્ટની રચનાઓની ઊંડી અસર છે તથા અનુવાદ દ્વારા અનેક પડોશી રાષ્ટ્રોની સંસ્કૃતિને પણ પ્રભાવિત કરી છે. ઈસ્લામિક સુવર્ણ યુગ (ca. 820) દરમિયાન અરેબિક અનુવાદ, નિશ્ચિતપણે પ્રભાવશાળી હતો. આના કેટલાક પરિણામો અલ-ખ્વારિઝ્મિ દ્વારા ટાંકવામાં આવ્યા છે અને 10મી સદીના અરબી વિદ્વાન અલ-બિરુનિએ તેમનો સંદર્ભ આપ્યો છે, જે જણાવે છે કે આર્યભટ્ટના અનુયાયીઓ માનતા હતા કે પૃથ્વી પોતાની ધરી પર ફરે છે.

સાઈન (જ્યા )ની તેમની વ્યાખ્યાઓ, આ જ રીતે (કોજ્યા ), વર્સાઈન (ઉકરામજ્યા), અને ઈનવર્સ સાઈન (ઓટ્કરમજ્યા )એ ત્રિકોણમિતિના જન્મને પ્રભાવિત કર્યો હતો. તે સૌથી પહેલી વ્યક્તિ હતી કે જેણે સાઈનની વર્સાઈન (1 - cosx) કોષ્ટકની સમજ આપી હોય, 4 દશાંશસ્થળોની ચોકસાઈ માટે 3.75°ના અંતર મુજબ 0° થી 90°ની ગણતરી છે.

હકીકતમાં આધુનિક નામો "સાઈન " and "કોસાઈન " એ આર્યભટ્ટે શોધેલા જ્યા અને કોજ્યા શબ્દોનું ખોટું અર્થઘટન છે. અરેબિકમાં તેમની નકલ જિબા અને કોજિબા તરીકે કરવામાં આવી. એરેબિક ભૂમિતિના લખાણોનો લેટિનમાં અનુવાદ કરતી વખતે ક્રેમોનાના ગેરાર્ડે/0} ખોટું અર્થઘટન કર્યું; તેઓ જિબા શબ્દને અરબી શબ્દ જૈબ સમજ્યા, જેનો અર્થ થાય છે "કપડામાં લપેટાયેલું", એલ. સાઈનર (c.1150)

આર્યભટ્ટની ખગોળશાસ્ત્રીય ગણતરીની પદ્ધતિઓ પણ અત્યંત પ્રભાવશાળી હતી. ઈસ્લામિક જગતમાં ત્રિકોણમિતિના કોષ્ટકોની સાથે તેનો પણ બહોળો ઉપયોગ થવા માંડ્યો, અને ઘણાં એરેબિક ખગોળશાસ્ત્રીય કોષ્ટકો (ઝિજો) ઉકેલવા તેનો ઉપયોગ થતો હતો. વિશેષ રીતે અરેબિક સ્પેન વિજ્ઞાની અલ-ઝરકાલી (11મી સદી)ની રચનાઓંનો અનુવાદ લેટિનમાં ટોલેન્ડોના કોષ્ટક (12મી સદી) તરીકે થયો હતો અને ખગોળશાસ્ત્રની સૌથી વધારે ચોક્કસ પદ્ધતિ તરીકે યુરોપમાં તેનો સદીઓ સુધી ઉપયોગ થતો હતો. આર્યભટ્ટ અને તેમના અનુયાયીઓએ કરેલી મહિનાઓની ગણતરીઓનો ભારતમાં વાસ્તવિક જીવનમાં પણ ઉપયોગ થતો આવ્યો છે, ખાસ કરીને પંચાંગ નક્કી કરવા, અથવા હિન્દુ કેલેન્ડર (તિથિ) જોવા ઉપયોગ થાય છે. આ બંને વસ્તુઓ ઈસ્લામિક જગતમાં પણ પ્રવેશી હતી અને જલાલિ કેલેન્ડર1073નો ખયાલ આપનાર ઓમર ખયામ સહિતના ખગોળવિજ્ઞાનીના જૂથ માટે તેણે પાયાનું કામ કર્યું હતું, જેની આવૃત્તિનો (1925માં સુધારો કરાયો હતો) આજે ઈરાન અને અફઘાનિસ્તાનમાં રાષ્ટ્રીય કેલેન્ડર તરીકે ઉપયોગ થાય છે. વાસ્તવિક સૂર્ય સંક્રમણના આધારે જલાલિ કેલેન્ડર તેની તારીખ નક્કી કરે છે, જેવી રીતે આર્યભટ્ટ (અગાઉના સિદ્ધાંત કેલેન્ડરો)માં થતું હતું. આ પદ્ધતિના કેલેન્ડર માટે તારીખોની ગણતરી કરવા ગ્રહોની ગતિનો અભ્યાસ જરૂરી છે. તારીખની ગણતરી કરવી અઘરી હોવા છતાં જ્યોર્જિયન કેલેન્ડરની સરખામણીએ જલાલિ કેલેન્ડરમાં પ્રાસંગિક ભૂલો ઓછી હતી.

ભારતના પ્રથમ ઉપગ્રહ આર્યભટનું નામ તેમના નામ પરથી રાખવામાં આવ્યું હતું. ચંદ્ર પરના ખાડા આર્યભટનું નામ તેમના માનમાં રાખવામાં આવ્યું છે.ખગોળશાસ્ત્ર, નક્ષત્ર ભૌતિક રાસાયણિક શાસ્ત્ર અને વાતાવરણ વિજ્ઞાનમાં સંશોધન માટે નૈનિતાલ, ભારત, પાસે સ્થપાયેલ સંસ્થાનું નામ આર્યભટ્ટ રીસર્ચ ઈન્સ્ટિટ્યુટ ઓફ ઓબસર્વેશનલ સાયન્સીસ (ARIES) રાખવામાં આવ્યું છે. સ્કૂલો વચ્ચેની આર્યભટ્ટ ગણિત સ્પર્ધાનું નામ પણ તેમના પરથી રખાયું છે. બેસિલ્લસ આર્યભટ , ISROના વિજ્ઞાનીઓ દ્વારા 2009માં શોધાયેલ બેક્ટેરિયાના એક પ્રકારનું નામ તેમના પર રાખવામાં આવ્યું છે.

સંદર્ભ

અન્ય સંદર્ભો

  • Cooke, Roger (૧૯૯૭). The History of Mathematics: A Brief Course. Wiley-Interscience. ISBN 0471180823. CS1 maint: discouraged parameter (link)
  • વોલ્ટર યુજીન ક્લાર્ક, The Āryabhaṭīya of Āryabhaṭa, એન એન્શિયન્ટ ઈન્ડિયન વર્ક ઓન મેથેમેટિક્સ એન્ડ એસ્ટ્રોનોમી ,(An Ancient Indian Work on Mathematics and Astronomy), યુનિવર્સિટી ઓફ શિકાગો પ્રેસ (1930); પુનઃમુદ્રિત: કેસ્સિન્જર પબ્લિશિંગ (2006), ISBN 978-1-4254-8599-3.
  • કાક, સુભાષ સી. (2000). Birth and Early Development of Indian Astronomy.
  • શુક્લ, ક્રિપા શંકર.આર્યભટ:ભારતીય ગણિતશાસ્ત્રી અને ખગોળવિજ્ઞાની. નવી દિલ્હી: ઈન્ડિયન નેશનલ સાયન્સ એકેડમી, 1976.

બાહ્ય કડીઓ

Tags:

આર્યભટ્ટ જીવનચરિત્રઆર્યભટ્ટ રચનાઓઆર્યભટ્ટ ગણિતશાસ્ત્રઆર્યભટ્ટ ખગોળશાસ્ત્રઆર્યભટ્ટ વારસોઆર્યભટ્ટ સંદર્ભઆર્યભટ્ટ બાહ્ય કડીઓઆર્યભટ્ટખગોળશાસ્ત્રસંસ્કૃત ભાષા

🔥 Trending searches on Wiki ગુજરાતી:

ભારતીય બંધારણ સભાભારત સરકારવાયુઅમદાવાદની ભૂગોળપાણીપતનું પહેલું યુદ્ધતાલુકા વિકાસ અધિકારીક્રોમામણિશંકર રત્નજી ભટ્ટચેસજય શ્રી રામગુજરાત રાજ્યનાં સાંસદો (૧૪મી લોકસભા)ચીનતિરૂપતિ બાલાજીસરસ્વતી દેવીદેવાયત બોદરસ્વામીનારાયણ મંદિર, ગઢડાઆલ્બર્ટ આઇન્સ્ટાઇનપ્રાથમિક શાળાઅમદાવાદ મ્યુનિસિપલ કોર્પોરેશનદિવાળીબેન ભીલમોરારજી દેસાઈસિંગાપુરસ્નેહલતાએપ્રિલ ૨૨પાકિસ્તાનસ્વામિનારાયણ મંદિર, અમદાવાદઓડિસી નૃત્યયજ્ઞોપવીતભારતના ચારધામવીર્યસામાજિક પરિવર્તનકમ્પ્યુટર નેટવર્કચાંદીતિથિગુજરાતી વિશ્વકોશઅશ્વત્થામાભારતના વિદેશમંત્રીરવિશંકર રાવળચૈત્ર સુદ ૧૫પાણીપતની ત્રીજી લડાઈબાબાસાહેબ આંબેડકરકબજિયાતસાહિત્ય ગૌરવ પુરસ્કારસુરતજયંત પાઠકહરિયાણામળેલા જીવનકશોહાઈકુમકરધ્વજમાનવ શરીરપાલીતાણાઅલ્પેશ ઠાકોરભારતીય સ્વતંત્રતા ચળવળઉદ્‌ગારચિહ્નસિદ્ધરાજ જયસિંહકચ્છનો ઇતિહાસક્ષત્રિયસંસ્કૃતિભીમમટકું (જુગાર)તાલુકા પંચાયતકાંકરિયા તળાવભારતીય જ્યોતિષવિદ્યાઇતિહાસપત્રકારત્વકાચબોભારતીય રૂપિયોટાઇફોઇડપાણીગુજરાતી લિપિલગ્નગુજરાત મેટ્રોચિરંજીવીબિન-વેધક મૈથુનરબરભારતીય ધર્મોશીખ🡆 More