Models Of Dna Evolution

A number of different Markov models of DNA sequence evolution have been proposed.

These substitution models differ in terms of the parameters used to describe the rates at which one nucleotide replaces another during evolution. These models are frequently used in molecular phylogenetic analyses. In particular, they are used during the calculation of likelihood of a tree (in Bayesian and maximum likelihood approaches to tree estimation) and they are used to estimate the evolutionary distance between sequences from the observed differences between the sequences.

Introduction

These models are phenomenological descriptions of the evolution of DNA as a string of four discrete states. These Markov models do not explicitly depict the mechanism of mutation nor the action of natural selection. Rather they describe the relative rates of different changes. For example, mutational biases and purifying selection favoring conservative changes are probably both responsible for the relatively high rate of transitions compared to transversions in evolving sequences. However, the Kimura (K80) model described below only attempts to capture the effect of both forces in a parameter that reflects the relative rate of transitions to transversions.

Evolutionary analyses of sequences are conducted on a wide variety of time scales. Thus, it is convenient to express these models in terms of the instantaneous rates of change between different states (the Q matrices below). If we are given a starting (ancestral) state at one position, the model's Q matrix and a branch length expressing the expected number of changes to have occurred since the ancestor, then we can derive the probability of the descendant sequence having each of the four states. The mathematical details of this transformation from rate-matrix to probability matrix are described in the mathematics of substitution models section of the substitution model page. By expressing models in terms of the instantaneous rates of change we can avoid estimating a large numbers of parameters for each branch on a phylogenetic tree (or each comparison if the analysis involves many pairwise sequence comparisons).

The models described on this page describe the evolution of a single site within a set of sequences. They are often used for analyzing the evolution of an entire locus by making the simplifying assumption that different sites evolve independently and are identically distributed. This assumption may be justifiable if the sites can be assumed to be evolving neutrally. If the primary effect of natural selection on the evolution of the sequences is to constrain some sites, then models of among-site rate-heterogeneity can be used. This approach allows one to estimate only one matrix of relative rates of substitution, and another set of parameters describing the variance in the total rate of substitution across sites.

DNA evolution as a continuous-time Markov chain

Continuous-time Markov chains

Continuous-time Markov chains have the usual transition matrices which are, in addition, parameterized by time, Models Of Dna Evolution . Specifically, if Models Of Dna Evolution  are the states, then the transition matrix

    Models Of Dna Evolution  where each individual entry, Models Of Dna Evolution  refers to the probability that state Models Of Dna Evolution  will change to state Models Of Dna Evolution  in time Models Of Dna Evolution .

Example: We would like to model the substitution process in DNA sequences (i.e. Jukes–Cantor, Kimura, etc.) in a continuous-time fashion. The corresponding transition matrices will look like:

    Models Of Dna Evolution 

where the top-left and bottom-right 2 × 2 blocks correspond to transition probabilities and the top-right and bottom-left 2 × 2 blocks corresponds to transversion probabilities.

Assumption: If at some time Models Of Dna Evolution , the Markov chain is in state Models Of Dna Evolution , then the probability that at time Models Of Dna Evolution , it will be in state Models Of Dna Evolution  depends only upon Models Of Dna Evolution , Models Of Dna Evolution  and Models Of Dna Evolution . This then allows us to write that probability as Models Of Dna Evolution .

Theorem: Continuous-time transition matrices satisfy:

      Models Of Dna Evolution 

Note: There is here a possible confusion between two meanings of the word transition. (i) In the context of Markov chains, transition is the general term for the change between two states. (ii) In the context of nucleotide changes in DNA sequences, transition is a specific term for the exchange between either the two purines (A ↔ G) or the two pyrimidines (C ↔ T) (for additional details, see the article about transitions in genetics). By contrast, an exchange between one purine and one pyrimidine is called a transversion.

Deriving the dynamics of substitution

Consider a DNA sequence of fixed length m evolving in time by base replacement. Assume that the processes followed by the m sites are Markovian independent, identically distributed and that the process is constant over time. For a particular site, let

    Models Of Dna Evolution 

be the set of possible states for the site, and

    Models Of Dna Evolution 

their respective probabilities at time Models Of Dna Evolution . For two distinct Models Of Dna Evolution , let Models Of Dna Evolution  be the transition rate from state Models Of Dna Evolution  to state Models Of Dna Evolution . Similarly, for any Models Of Dna Evolution , let the total rate of change from Models Of Dna Evolution  be

    Models Of Dna Evolution 

The changes in the probability distribution Models Of Dna Evolution  for small increments of time Models Of Dna Evolution  are given by

    Models Of Dna Evolution 

In other words, (in frequentist language), the frequency of Models Of Dna Evolution 's at time Models Of Dna Evolution  is equal to the frequency at time Models Of Dna Evolution  minus the frequency of the lost Models Of Dna Evolution 's plus the frequency of the newly created Models Of Dna Evolution 's.

Similarly for the probabilities Models Of Dna Evolution , Models Of Dna Evolution  and Models Of Dna Evolution . These equations can be written compactly as

    Models Of Dna Evolution 

where

    Models Of Dna Evolution 

is known as the rate matrix. Note that, by definition, the sum of the entries in each row of Models Of Dna Evolution  is equal to zero. It follows that

    Models Of Dna Evolution 

For a stationary process, where Models Of Dna Evolution  does not depend on time t, this differential equation can be solved. First,

    Models Of Dna Evolution 

where Models Of Dna Evolution  denotes the exponential of the matrix Models Of Dna Evolution . As a result,

    Models Of Dna Evolution 

Ergodicity

If the Markov chain is irreducible, i.e. if it is always possible to go from a state Models Of Dna Evolution  to a state Models Of Dna Evolution  (possibly in several steps), then it is also ergodic. As a result, it has a unique stationary distribution Models Of Dna Evolution , where Models Of Dna Evolution  corresponds to the proportion of time spent in state Models Of Dna Evolution  after the Markov chain has run for an infinite amount of time. In DNA evolution, under the assumption of a common process for each site, the stationary frequencies Models Of Dna Evolution  correspond to equilibrium base compositions. Indeed, note that since the stationary distribution Models Of Dna Evolution  satisfies Models Of Dna Evolution , we see that when the current distribution Models Of Dna Evolution  is the stationary distribution Models Of Dna Evolution  we have

    Models Of Dna Evolution 

In other words, the frequencies of Models Of Dna Evolution  do not change.

Time reversibility

Definition: A stationary Markov process is time reversible if (in the steady state) the amount of change from state Models Of Dna Evolution  to Models Of Dna Evolution  is equal to the amount of change from Models Of Dna Evolution  to Models Of Dna Evolution , (although the two states may occur with different frequencies). This means that:

    Models Of Dna Evolution 

Not all stationary processes are reversible, however, most commonly used DNA evolution models assume time reversibility, which is considered to be a reasonable assumption.

Under the time reversibility assumption, let Models Of Dna Evolution , then it is easy to see that:

    Models Of Dna Evolution 

Definition The symmetric term Models Of Dna Evolution  is called the exchangeability between states Models Of Dna Evolution  and Models Of Dna Evolution . In other words, Models Of Dna Evolution  is the fraction of the frequency of state Models Of Dna Evolution  that is the result of transitions from state Models Of Dna Evolution  to state Models Of Dna Evolution .

Corollary The 12 off-diagonal entries of the rate matrix, Models Of Dna Evolution  (note the off-diagonal entries determine the diagonal entries, since the rows of Models Of Dna Evolution  sum to zero) can be completely determined by 9 numbers; these are: 6 exchangeability terms and 3 stationary frequencies Models Of Dna Evolution , (since the stationary frequencies sum to 1).

Scaling of branch lengths

By comparing extant sequences, one can determine the amount of sequence divergence. This raw measurement of divergence provides information about the number of changes that have occurred along the path separating the sequences. The simple count of differences (the Hamming distance) between sequences will often underestimate the number of substitution because of multiple hits (see homoplasy). Trying to estimate the exact number of changes that have occurred is difficult, and usually not necessary. Instead, branch lengths (and path lengths) in phylogenetic analyses are usually expressed in the expected number of changes per site. The path length is the product of the duration of the path in time and the mean rate of substitutions. While their product can be estimated, the rate and time are not identifiable from sequence divergence.

The descriptions of rate matrices on this page accurately reflect the relative magnitude of different substitutions, but these rate matrices are not scaled such that a branch length of 1 yields one expected change. This scaling can be accomplished by multiplying every element of the matrix by the same factor, or simply by scaling the branch lengths. If we use the β to denote the scaling factor, and ν to denote the branch length measured in the expected number of substitutions per site then βν is used in the transition probability formulae below in place of μt. Note that ν is a parameter to be estimated from data, and is referred to as the branch length, while β is simply a number that can be calculated from the rate matrix (it is not a separate free parameter).

The value of β can be found by forcing the expected rate of flux of states to 1. The diagonal entries of the rate-matrix (the Q matrix) represent -1 times the rate of leaving each state. For time-reversible models, we know the equilibrium state frequencies (these are simply the πi parameter value for state i). Thus we can find the expected rate of change by calculating the sum of flux out of each state weighted by the proportion of sites that are expected to be in that class. Setting β to be the reciprocal of this sum will guarantee that scaled process has an expected flux of 1:

    Models Of Dna Evolution 

For example, in the Jukes–Cantor, the scaling factor would be 4/(3μ) because the rate of leaving each state is 3μ/4.

Most common models of DNA evolution

JC69 model (Jukes and Cantor 1969)

JC69, the Jukes and Cantor 1969 model, is the simplest substitution model. There are several assumptions. It assumes equal base frequencies Models Of Dna Evolution  and equal mutation rates. The only parameter of this model is therefore Models Of Dna Evolution , the overall substitution rate. As previously mentioned, this variable becomes a constant when we normalize the mean-rate to 1.

    Models Of Dna Evolution 
Models Of Dna Evolution 
Probability Models Of Dna Evolution  of changing from initial state Models Of Dna Evolution  to final state Models Of Dna Evolution  as a function of the branch length (Models Of Dna Evolution ) for JC69. Red curve: nucleotide states Models Of Dna Evolution  and Models Of Dna Evolution  are different. Blue curve: initial and final states are the same. After a long time, probabilities tend to the nucleotide equilibrium frequencies (0.25: dashed line).
    Models Of Dna Evolution 

When branch length, Models Of Dna Evolution , is measured in the expected number of changes per site then:

    Models Of Dna Evolution 

It is worth noticing that Models Of Dna Evolution  what stands for sum of any column (or row) of matrix Models Of Dna Evolution  multiplied by time and thus means expected number of substitutions in time Models Of Dna Evolution  (branch duration) for each particular site (per site) when the rate of substitution equals Models Of Dna Evolution .

Given the proportion Models Of Dna Evolution  of sites that differ between the two sequences the Jukes–Cantor estimate of the evolutionary distance (in terms of the expected number of changes) between two sequences is given by

    Models Of Dna Evolution 

The Models Of Dna Evolution  in this formula is frequently referred to as the Models Of Dna Evolution -distance. It is a sufficient statistic for calculating the Jukes–Cantor distance correction, but is not sufficient for the calculation of the evolutionary distance under the more complex models that follow (also note that Models Of Dna Evolution  used in subsequent formulae is not identical to the "Models Of Dna Evolution -distance").

K80 model (Kimura 1980)

K80, the Kimura 1980 model, often referred to as Kimura's two parameter model (or the K2P model), distinguishes between transitions (Models Of Dna Evolution , i.e. from purine to purine, or Models Of Dna Evolution , i.e. from pyrimidine to pyrimidine) and transversions (from purine to pyrimidine or vice versa). In Kimura's original description of the model the α and β were used to denote the rates of these types of substitutions, but it is now more common to set the rate of transversions to 1 and use κ to denote the transition/transversion rate ratio (as is done below). The K80 model assumes that all of the bases are equally frequent (Models Of Dna Evolution ).

Rate matrix Models Of Dna Evolution  with columns corresponding to Models Of Dna Evolution , Models Of Dna Evolution , Models Of Dna Evolution , and Models Of Dna Evolution , respectively.

The Kimura two-parameter distance is given by:

    Models Of Dna Evolution 

where p is the proportion of sites that show transitional differences and q is the proportion of sites that show transversional differences.

K81 model (Kimura 1981)

K81, the Kimura 1981 model, often called Kimura's three parameter model (K3P model) or the Kimura three substitution type (K3ST) model, has distinct rates for transitions and two distinct types of transversions. The two transversion types are those that conserve the weak/strong properties of the nucleotides (i.e., Models Of Dna Evolution  and Models Of Dna Evolution , denoted by symbol Models Of Dna Evolution  ) and those that conserve the amino/keto properties of the nucleotides (i.e., Models Of Dna Evolution  and Models Of Dna Evolution , denoted by symbol Models Of Dna Evolution  ). The K81 model assumes that all equilibrium base frequencies are equal (i.e., Models Of Dna Evolution ).

Rate matrix Models Of Dna Evolution  with columns corresponding to Models Of Dna Evolution , Models Of Dna Evolution , Models Of Dna Evolution , and Models Of Dna Evolution , respectively.

The K81 model is used much less often than the K80 (K2P) model for distance estimation and it is seldom the best-fitting model in maximum likelihood phylogenetics. Despite these facts, the K81 model has continued to be studied in the context of mathematical phylogenetics. One important property is the ability to perform a Hadamard transform assuming the site patterns were generated on a tree with nucleotides evolving under the K81 model.

When used in the context of phylogenetics the Hadamard transform provides an elegant and fully invertible means to calculate expected site pattern frequencies given a set of branch lengths (or vice versa). Unlike many maximum likelihood calculations, the relative values for Models Of Dna Evolution , Models Of Dna Evolution , and Models Of Dna Evolution  can vary across branches and the Hadamard transform can even provide evidence that the data do not fit a tree. The Hadamard transform can also be combined with a wide variety of methods to accommodate among-sites rate heterogeneity, using continuous distributions rather than the discrete approximations typically used in maximum likelihood phylogenetics (although one must sacrifice the invertibility of the Hadamard transform to use certain among-sites rate heterogeneity distributions).

F81 model (Felsenstein 1981)

F81, the Felsenstein's 1981 model, is an extension of the JC69 model in which base frequencies are allowed to vary from 0.25 (Models Of Dna Evolution )

Rate matrix:

    Models Of Dna Evolution 

When branch length, ν, is measured in the expected number of changes per site then:

    Models Of Dna Evolution 
    Models Of Dna Evolution 

HKY85 model (Hasegawa, Kishino and Yano 1985)

HKY85, the Hasegawa, Kishino and Yano 1985 model, can be thought of as combining the extensions made in the Kimura80 and Felsenstein81 models. Namely, it distinguishes between the rate of transitions and transversions (using the κ parameter), and it allows unequal base frequencies (Models Of Dna Evolution ). [ Felsenstein described a similar (but not equivalent) model in 1984 using a different parameterization; that latter model is referred to as the F84 model. ]

Rate matrix Models Of Dna Evolution 

If we express the branch length, ν in terms of the expected number of changes per site then:

    Models Of Dna Evolution 
    Models Of Dna Evolution 
    Models Of Dna Evolution 
    Models Of Dna Evolution 
    Models Of Dna Evolution 

and formula for the other combinations of states can be obtained by substituting in the appropriate base frequencies.

T92 model (Tamura 1992)

T92, the Tamura 1992 model, is a mathematical method developed to estimate the number of nucleotide substitutions per site between two DNA sequences, by extending Kimura's (1980) two-parameter method to the case where a G+C content bias exists. This method will be useful when there are strong transition-transversion and G+C-content biases, as in the case of Drosophila mitochondrial DNA.

T92 involves a single, compound base frequency parameter Models Of Dna Evolution  (also noted Models Of Dna Evolution ) Models Of Dna Evolution 

As T92 echoes the Chargaff's second parity rule — pairing nucleotides do have the same frequency on a single DNA strand, G and C on the one hand, and A and T on the other hand — it follows that the four base frequences can be expressed as a function of Models Of Dna Evolution 

Models Of Dna Evolution  and Models Of Dna Evolution 

Rate matrix Models Of Dna Evolution 

The evolutionary distance between two DNA sequences according to this model is given by

    Models Of Dna Evolution 

where Models Of Dna Evolution  and Models Of Dna Evolution  is the G+C content (Models Of Dna Evolution ).

TN93 model (Tamura and Nei 1993)

TN93, the Tamura and Nei 1993 model, distinguishes between the two different types of transition; i.e. (Models Of Dna Evolution ) is allowed to have a different rate to (Models Of Dna Evolution ). Transversions are all assumed to occur at the same rate, but that rate is allowed to be different from both of the rates for transitions.

TN93 also allows unequal base frequencies (Models Of Dna Evolution ).

Rate matrix Models Of Dna Evolution 

GTR model (Tavaré 1986)

GTR, the Generalised time-reversible model of Tavaré 1986, is the most general neutral, independent, finite-sites, time-reversible model possible. It was first described in a general form by Simon Tavaré in 1986.

GTR parameters consist of an equilibrium base frequency vector, Models Of Dna Evolution , giving the frequency at which each base occurs at each site, and the rate matrix

    Models Of Dna Evolution 

Where

Models Of Dna Evolution 

are the transition rate parameters.

Therefore, GTR (for four characters, as is often the case in phylogenetics) requires 6 substitution rate parameters, as well as 4 equilibrium base frequency parameters. However, this is usually eliminated down to 9 parameters plus Models Of Dna Evolution , the overall number of substitutions per unit time. When measuring time in substitutions (Models Of Dna Evolution =1) only 8 free parameters remain.

In general, to compute the number of parameters, one must count the number of entries above the diagonal in the matrix, i.e. for n trait values per site Models Of Dna Evolution , and then add n for the equilibrium base frequencies, and subtract 1 because Models Of Dna Evolution  is fixed. One gets

    Models Of Dna Evolution 

For example, for an amino acid sequence (there are 20 "standard" amino acids that make up proteins), one would find there are 209 parameters. However, when studying coding regions of the genome, it is more common to work with a codon substitution model (a codon is three bases and codes for one amino acid in a protein). There are Models Of Dna Evolution  codons, but the rates for transitions between codons which differ by more than one base is assumed to be zero. Hence, there are Models Of Dna Evolution  parameters.

See also

References

Tags:

Models Of Dna Evolution IntroductionModels Of Dna Evolution DNA evolution as a continuous-time Markov chainModels Of Dna Evolution Most common models of DNA evolutionModels Of Dna EvolutionBayesian inferenceMarkov chainMaximum likelihoodMolecular phylogeneticsNucleotideSubstitution model

🔥 Trending searches on Wiki English:

Mike TysonEmma CorrinSkibidi ToiletOzzy Osbourne2024 Indian general election in KarnatakaWish (film)Lana Del ReyTyla (South African singer)Arne SlotNorthrop Grumman B-2 SpiritThe Spiderwick Chronicles (TV series)John CenaChinaFlorence Pugh420 (cannabis culture)2024 NFL draft.xxxBaby ReindeerHeartbreak High (2022 TV series)Randy SavageShai Gilgeous-AlexanderBreathe (2024 film)MandisaDune MessiahWorld Chess Championship 2024Warwick DavisKalanithi MaranLinkedInUnited Airlines Flight 232Prince (musician)Backlash FranceEnshittificationSalekaMia GothMumbai IndiansAlan RitchsonScottie SchefflerGene SimmonsDrake BellPremaluGeoffrey ArendWar for the Planet of the ApesChaturbateBillie EilishWikipediaBlue Lights (2023 TV series)Jennifer LopezNational Hockey League2024 Indian general election in Uttar PradeshPep GuardiolaPortrait of JennieDiljit DosanjhThe First Omen2024 Indian general election in TelanganaPatti SmithMari EmmanuelAndrew TateFascismMain PageDominic WestNag AshwinThe Beekeeper (2024 film)Swerve StricklandLauryn HillYoung SheldonBob MarleyHugh JackmanDonald TrumpMr Bates vs The Post OfficeRoman EmpireSean Foley (director)Tom BradyAshwatthamaVietnamCleopatraJontay PorterMariska HargitayThe Sympathizer (miniseries)Maldives🡆 More